[Name of Document] APPLICATION FOR PATENT

[Identification Number] C1-A0320Y1

[Filing Date] March 12, 2004

[Addressee] Esq. Commissioner of the Patent Office

[Inventor]

[Address] c/o CHUGAI SEIYAKU KABUSHIKI KAISHA,

153-2, Nagai, Niihari-mura, Niihari-gun,

Ibaraki

[Name] TSUNODA, Hiroyuki

[Inventor]

[Address] c/o CHUGAI SEIYAKU KABUSHIKI KAISHA,

153-2, Nagai, Niihari-mura, Niihari-gun,

Ibaraki

[Name] NAKANO, Kiyotaka

[Inventor]

[Address] c/o CHUGAI SEIYAKU KABUSHIKI KAISHA,

153-2, Nagai, Niihari-mura, Niihari-gun,

Ibaraki

[Name] ORITA, Tetsuro

[Inventor]

[Address] c/o CHUGAI SEIYAKU KABUSHIKI KAISHA,

135, Komakado 1-chome, Gotenba-shi,

Shizuoka

[Name] TSUCHIYA, Masayuki

[Inventor]

[Address] c/o CHUGAI SEIYAKU KABUSHIKI KAISHA,

153-2, Nagai, Niihari-mura, Niihari-gun,

IBARAKI

[Name] HIRATA, Yuichi

[Applicant]

[Identification Number] 000003311

[Name or Appellation] CHUGAI SEIYAKU KABUSHIKI KAISHA

[Attorney]

[Identification Number] 100102978

[Patent Attorney]

[Name or Appellation] Hatsushi Shimizu

[Nominated Attorney]

[Identification Number] 100108774

[Patent Attorney]

[Name or Appellation] Kazunori Hashimoto

[Priority]

[Application Number] JP2003-415746

[Filing Date] December 12, 2003

[Payment]

[Registration Number] 041092

[Amount] 21000 yen

[List of Attached Documents]

[Name of Document] Claims 1

[Name of Document] Specification 1

[Name of Document] Drawings 1

[Name of Document] Abstract 1

[General Power of Attorney Number] 0216136

[Document Name] Claims

[Claim 1]

An antibody comprising a single-chain polypeptide having binding activity against TPO receptor (Mpl), wherein said antibody comprises two heavy chain variable regions and two light chain variable regions.

[Claim 2]

5

10

15

The antibody of claim 1, wherein the two heavy chain variable regions and the two light chain variable regions are arranged in the order of heavy chain variable region, light chain variable region, heavy chain variable region, and light chain variable region from the N terminus of the single-chain polypeptide.

[Claim 3]

The antibody of claim 1 or 2, wherein the two heavy chain variable regions and the two light chain variable regions are linked by linkers.

[Claim 4]

The antibody of claim 3, wherein the linkers comprise 15 amino acids.

[Claim 5]

A chimeric antibody that binds to Mpl.

[Claim 6]

The antibody of claim 5, which is a humanized antibody.

20 [Claim 7]

The antibody of claim 5 or 6, which is a minibody.

[Claim 8]

An antibody that binds to soluble Mpl.

[Claim 9]

An antibody that binds to human Mpl and monkey Mpl.

[Claim 10]

An antibody having agonistic activity against human Mpl and monkey Mpl.

[Claim 11]

An antibody whose binding activity to soluble Mpl is $KD = 10^{-6}$ M or lower.

30 [Claim 12]

An antibody whose binding activity to soluble Mpl is $KD = 10^{-7}$ M or lower.

[Claim 13]

An antibody whose binding activity to soluble Mpl is $KD = 10^{-8}$ M or lower. [Claim 14]

An antibody whose TPO agonistic activity is EC50 = 100 nM or lower.

[Claim 15]

An antibody whose TPO agonistic activity is EC50 = 30 nM or lower. [Claim 16]

An antibody whose TPO agonistic activity is EC50 = 10 nM or lower.

5 [Claim 17]

15

20

25

30

An antibody which comprises a heavy chain variable region, wherein said heavy chain variable regions comprises CDR1, CDR2 and CDR3 consisting of an amino acid sequence of any one of:

```
[1] SEQ ID NOs: 3, 4, and 5
```

10 [2] SEQ ID NOs: 6, 7, and 8

[3] SEQ ID NOs: 9, 10, and 11

[4] SEQ ID NOs: 12, 13, and 14

[5] SEQ ID NOs: 15, 16, and 17

[6] SEQ ID NOs: 18, 19, and 20

[7] SEQ ID NOs: 21, 22, and 23

[8] SEQ ID NOs: 24, 25, and 26

[9] SEQ ID NOs: 27, 28, and 29

[10] SEQ ID NOs: 30, 31, and 32

[11] SEQ ID NOs: 33, 34, and 35

[12] SEQ ID NOs: 36, 37, and 38

[13] SEQ ID NOs: 39, 40, and 41

[14] SEQ ID NOs: 42, 43, and 44

[15] SEQ ID NOs: 45, 46, and 47

[16] SEQ ID NOs: 48, 49, and 50

[17] SEQ ID NOs: 51, 52, and 53

[18] SEQ ID NOs: 54, 55, and 56

[19] SEQ ID NOs: 57, 58, and 59

[20] SEQ ID NOs: 231, 233, and 235

[21] SEQ ID NOs: 266, 268, and 270

[22] SEQ ID NOs: 280, 282, and 284.

[Claim 18]

An antibody which comprises a light chain variable region, wherein said light chain variable region comprises CDR1, CDR2 and CDR3 consisting of an amino acid sequence of any one of:

35 [1] SEQ ID NOs: 60, 61, and 62

[2] SEQ ID NOs: 63, 64, and 65

```
[3] SEQ ID NOs: 66, 67, and 68
             [4] SEQ ID NOs: 69, 70, and 71
             [5] SEQ ID NOs: 72, 73, and 74
             [6] SEQ ID NOs: 75, 76, and 77
 5
             [7] SEQ ID NOs: 78, 79, and 80
             [8] SEQ ID NOs: 81, 82, and 83
             [9] SEQ ID NOs: 84, 85, and 86
             [10] SEQ ID NOs: 87, 88, and 89
             [11] SEO ID NOs: 90, 91, and 92
10
             [12] SEQ ID NOs: 93, 94, and 95
             [13] SEQ ID NOs: 96, 97, and 98
             [14] SEQ ID NOs: 99, 100, and 101
             [15] SEQ ID NOs: 102, 103, and 104
             [16] SEQ ID NOs: 105, 106, and 107
15
             [17] SEQ ID NOs: 108, 109, and 110
             [18] SEQ ID NOs: 111, 112, and 113
             [19] SEQ ID NOs: 114, 115, and 116
             [20] SEQ ID NOs: 240, 242, and 244
             [21] SEQ ID NOs: 273, 275, and 277.
```

20 [Claim 19]

25

30

An antibody that comprises a heavy chain variable region and a light chain variable region of any one of:

- [1] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 3, 4, and 5, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 60, 61, and 62;
- [2] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 6, 7, and 8, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 63, 64, and 65;
- [3] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 9, 10, and 11, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 66, 67, and 68;
- 35 [4] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 12, 13, and 14, and a light chain variable region that

comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 69, 70, and 71;

[5] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 15, 16, and 17, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 72, 73, and 74;

5

10

15

20

25

30

- [6] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 18, 19, and 20, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 75, 76, and 77;
- [7] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 21, 22, and 23, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 78, 79, and 80;
- [8] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 24, 25, and 26, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 81, 82, and 83;
- [9] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 27, 28, and 29, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 84, 85, and 86;
- [10] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 30, 31, and 32, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 87, 88, and 89;
- [11] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 33, 34, and 35, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 90, 91, and 92;
- [12] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 36, 37, and 38, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 93, 94, and 95;
- [13] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 39, 40, and 41, and a light chain variable

region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 96, 97, and 98;

[14] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 42, 43, and 44, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 99, 100, and 101;

5

10

15

20

25

30

- [15] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 45, 46, and 47, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 102, 103, and 104;
- [16] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 48, 49, and 50, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 105, 106, and 107;
- [17] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 51, 52, and 53, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 108, 109, and 110,
- [18] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 54, 55, and 56, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 111, 112, and 113;
- [19] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 57, 58, and 59, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 114, 115, and 116;
- [20] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 231, 233, and 235, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 240, 242, and 244;
- [21] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 266, 268, and 270, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 273, 275, and 277;
- [22] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 280, 282, and 284, and a light chain

variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 273, 275, and 277.

[Claim 20]

An antibody that comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 118.

[Claim 21]

5

10

20

25

30

35

An antibody that comprises a light chain variable region comprising the amino acid sequence of SEQ ID NO: 120.

[Claim 22]

An antibody that comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 118 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 120.

[Claim 23]

An antibody comprising the amino acid sequence of SEQ ID NO: 122 or 264.

15 [Claim 24]

An antibody that comprises a heavy chain variable region, wherein said heavy chain variable region comprises FR1, FR2, FR3, and FR4 consisting of amino acid sequences of any one of:

- [1] SEQ ID NOs: 230, 232, 234, and 236
- [2] SEQ ID NOs: 265, 267, 269, and 271
- [3] SEQ ID NOs: 279, 281, 283, and 285.

[Claim 25]

An antibody comprising a light chain variable region, wherein said light chain variable region comprises FR1, FR2, FR3, and FR4 consisting of amino acid sequences of any one of:

- [1] SEQ ID NOs: 239, 241, 243, and 245
- [2] SEQ ID NOs: 272, 274, 276, and 278.

[Claim 26]

An antibody that comprises a heavy chain variable region and a light chain variable region of any one of:

- [1] a heavy chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 230, 232, 234, and 236, and a light chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 239, 241, 243, and 245;
- [2] a heavy chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 265, 267, 269, and 271, and a light chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences

consisting of SEQ ID NOs: 272, 274, 276, and 278;

[3] a heavy chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 279, 281, 283, and 285, and a light chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 272, 274, 276, and 278.

[Claim 27]

5

10

15

20

25

35

An antibody that comprises a heavy chain variable region, wherein said heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 229, 256, or 262. [Claim 28]

An antibody that comprises a light chain variable region, wherein said light chain variable region comprises the amino acid sequence of SEQ ID NO: 238 or 258.

[Claim 29]

An antibody that comprises a heavy chain variable region and a light chain variable region of any one of:

- [1] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 229, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 238;
- [2] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 256, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 258;
- [3] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 262, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 258. [Claim 30]

An antibody that comprises the amino acid sequence of SEQ ID NO: 2, 254, or 260. [Claim 31]

An antibody having an activity equivalent to that of an antibody of any one of claims 17 to 30, wherein said antibody comprises the amino acid sequence set forth in any one of claims 17 to 30, in which one or more amino acids have been substituted, deleted, added and/or inserted. [Claim 32]

An antibody that recognizes an epitope recognized by an antibody of any one of claims 17 to 31.

30 [Claim 33]

An antibody that recognizes the region of amino acids 26 to 274 of human Mpl. [Claim 34]

An antibody of any one of claims 1 to 33, which has TPO agonistic activity. [Claim 35]

A polynucleotide encoding an antibody of any one of claims 1 to 34. [Claim 36]

A polynucleotide hybridizing to the polynucleotide of claim 35 under stringent conditions, wherein said polynucleotide encodes an antibody having activity equivalent to that of an antibody of any one of claims 1 to 34.

[Claim 37]

5

A vector comprising the polynucleotide of claim 35 or 36.

[Claim 38]

A host cell that carries the polynucleotide of claim 35 or 36, or the vector of claim 37. [Claim 39]

A pharmaceutical composition comprising an antibody of any one of claims 1 to 34.

[Document Name] Specification

[Title of the Invention] ANTI-MPL ANTIBODIES

[Technical Field]

5

10

15

20

25

30

[0001]

The present invention relates to anti-Mpl antibodies.

[Background of the Invention]

[0002]

Thrombopoietin (TPO) is a factor that enhances the differentiation and maturation of megakaryocytes (platelet precursor cells) from hemopoietic stem cells into platelets. TPO also functions as a cytokine with an important role in the regulation of platelet number. TPO is converted into its active form through the cleavage of a TPO precursor comprising 353 amino acids.

[0003]

Mpl is a TPO receptor, and human Mpl molecules are known to exist in two forms comprising 572 and 635 amino acids. The human Mpl gene sequence has already been analyzed (see Non-patent Document 1 and GenBank accession No. NM_005373).

[0004]

Most cytokine receptors dimerize upon ligand binding, and transduce signals into cells. It has been reported that TPO similarly binds to its own specific receptor MPL, which leads to dimerization of the receptor, thereby transducing signals into cells and exerting physiological effects (see Non-patent Document 2).

[0005]

Antibodies exhibiting agonistic activity have been reported among those antibodies that bind to receptors having the above features.

For example, an antibody against the erythropoietin (EPO) receptor has been reported to substitute for erythropoietin function. The monovalent form (Fab) of the antibody is capable of binding to the EPO receptor but is unable to transduce signals. Thus, dimerization of the erythropoietin receptor *via* bivalent binding is assumed to be essential for signal transduction (see Non-patent Document 3).

[0006]

Antibodies that bind to Mpl and exhibit TPO agonistic activity have also been reported (see Non-patent Documents 4 and 5). This suggests that receptor dimerization is induced upon binding of a bivalent antibody with regards to MPL as well.

35 [0007]

Meanwhile, a single-chain antibody (scFv) has been reported to exhibit TPO agonistic

activity (see Patent Document 1). However, it has been revealed that, the underlying mechanism of scFv exhibiting TPO agonistic activity is that a part of scFv dimerizes (diabody) and this diabody becomes the actual active unit (see Patent Documents 2 to 4).

[8000]

5

10

25

30

35

[Patent Document 1] US Patent No. 6342220

[Patent Document 2] WO 01/79494

[Patent Document 3] WO 02/33072

[Patent Document 4] WO 02/33073

[Non-patent Document 1] Palacios et al., 1985, Cell, 41, 727-734

[Non-patent Document 2] Souyri et al., 1990, Cell, Vol.63, 1137-1147

[Non-patent Document 3] Elliott, S. et al., 1996, J. Biol. Chem., 271(40), 24691-24697

[Non-patent Document 4] Abe et al., 1998, Immunol. Lett., 61, 73-78

[Non-patent Document 5] Bijia Deng et al., 1998, Blood, 92, 1981-1988

[Disclosure of the Invention]

15 [Problems to be Solved by the Invention]

[0009]

The present invention was achieved in view of the above circumstances. An objective of the present invention is to provide novel anti-Mpl antibodies having TPO agonistic activity. [Means for Solving the Problems]

20 [0010]

The present inventors performed exhaustive research to solve the above objective. The present inventors prepared and purified anti-human Mpl antibody VB22B, and established a single-chain antibody expression system using genetic engineering techniques. Specifically, the variable region of anti-human Mpl antibody was first cloned, and a diabody expression vector pCXND3-VB22B db for the anti-human Mpl antibody was prepared. This pCXND3-VB22B db vector was then used to generate an expression vector pCXND3-VB22B sc(Fv)₂ for anti-human Mpl antibody sc(Fv)₂. Anti-human Mpl sc(Fv)₂ was expressed in CHO-DG44 cells using the expression vector pCXND3-VB22B sc(Fv)₂, and then purified from the culture supernatant. In control experiments, VB22B diabody was transiently expressed in COS7 cells using the above pCXND3-VB22B db vector, and then purified from the culture supernatant.

[0011]

In addition, VB22B diabody and VB22B sc(Fv)₂ were evaluated for their TPO-like agonistic activities. The results showed that VB22B diabody and VB22B sc(Fv)₂ exhibit higher agonistic activities compared to VB22B IgG, and thus activities equivalent to or higher than that of the natural ligand, human TPO.

[0012]

Furthermore, the present inventors succeeded in preparing three types of humanized VB22B sc(Fv)₂. The TPO-like agonistic activity was also proven to be unaltered by humanization.

[0013]

5

10

15

25

30

More specifically, the present invention relates to:

- (1) an antibody comprising a single-chain polypeptide having binding activity against TPO receptor (Mpl), wherein said antibody comprises two heavy chain variable regions and two light chain variable regions;
- (2) the antibody of (1), wherein the two heavy chain variable regions and the two light chain variable regions are arranged in the order of heavy chain variable region, light chain variable region, heavy chain variable region, and light chain variable region from the N terminus of the single-chain polypeptide;
- (3) the antibody of (1) or (2), wherein the two heavy chain variable regions and the two light chain variable regions are linked by linkers;
 - (4) the antibody of (3), wherein the linkers comprise 15 amino acids;
 - (5) a chimeric antibody that binds to Mpl;
 - (6) the antibody of (5), which is a humanized antibody;
 - (7) the antibody of (5) or (6), which is a minibody;
 - (8) an antibody that binds to soluble Mpl;
- 20 (9) an antibody that binds to human Mpl and monkey Mpl;
 - (10) an antibody having agonistic activity against human Mpl and monkey Mpl;
 - (11) an antibody whose binding activity to soluble Mpl is $KD = 10^{-6} M$ or lower;
 - (12) an antibody whose binding activity to soluble Mpl is $KD = 10^{-7} M$ or lower;
 - (13) an antibody whose binding activity to soluble Mpl is $KD = 10^{-8}$ M or lower;
 - (14) an antibody whose TPO agonistic activity is EC50 = 100 nM or lower;
 - (15) an antibody whose TPO agonistic activity is EC50 = 30 nM or lower;
 - (16) an antibody whose TPO agonistic activity is EC50 = 10 nM or lower;
 - (17) an antibody which comprises a heavy chain variable region, wherein said heavy chain variable regions comprises CDR1, CDR2 and CDR3 consisting of an amino acid sequence of any one of:
 - [1] SEQ ID NOs: 3, 4, and 5
 - [2] SEQ ID NOs: 6, 7, and 8
 - [3] SEQ ID NOs: 9, 10, and 11
 - [4] SEQ ID NOs: 12, 13, and 14
- 35 [5] SEQ ID NOs: 15, 16, and 17
 - [6] SEQ ID NOs: 18, 19, and 20

```
[7] SEQ ID NOs: 21, 22, and 23
              [8] SEQ ID NOs: 24, 25, and 26
              [9] SEQ ID NOs: 27, 28, and 29
              [10] SEQ ID NOs: 30, 31, and 32
 5
              [11] SEQ ID NOs: 33, 34, and 35
              [12] SEQ ID NOs: 36, 37, and 38
              [13] SEQ ID NOs: 39, 40, and 41
              [14] SEQ ID NOs: 42, 43, and 44
              [15] SEQ ID NOs: 45, 46, and 47
10
              [16] SEQ ID NOs: 48, 49, and 50
              [17] SEQ ID NOs: 51, 52, and 53
              [18] SEQ ID NOs: 54, 55, and 56
              [19] SEQ ID NOs: 57, 58, and 59
              [20] SEQ ID NOs: 231, 233, and 235
15
              [21] SEQ ID NOs: 266, 268, and 270
              [22] SEQ ID NOs: 280, 282, and 284;
              (18) an antibody which comprises a light chain variable region, wherein said light chain
      variable region comprises CDR1, CDR2 and CDR3 consisting of an amino acid sequence of any
     one of:
20
              [1] SEQ ID NOs: 60, 61, and 62
              [2] SEQ ID NOs: 63, 64, and 65
              [3] SEQ ID NOs: 66, 67, and 68
              [4] SEQ ID NOs: 69, 70, and 71
              [5] SEQ ID NOs: 72, 73, and 74
25
              [6] SEQ ID NOs: 75, 76, and 77
              [7] SEQ ID NOs: 78, 79, and 80
              [8] SEQ ID NOs: 81, 82, and 83
              [9] SEQ ID NOs: 84, 85, and 86
              [10] SEQ ID NOs: 87, 88, and 89
```

[11] SEQ ID NOs: 90, 91, and 92
[12] SEQ ID NOs: 93, 94, and 95
[13] SEQ ID NOs: 96, 97, and 98
[14] SEQ ID NOs: 99, 100, and 101
[15] SEQ ID NOs: 102, 103, and 104

[16] SEQ ID NOs: 105, 106, and 107 [17] SEQ ID NOs: 108, 109, and 110

30

- [18] SEQ ID NOs: 111, 112, and 113
- [19] SEQ ID NOs: 114, 115, and 116
- [20] SEQ ID NOs: 240, 242, and 244
- [21] SEQ ID NOs: 273, 275, and 277;

5

10

15

20

25

30

- (19) an antibody that comprises a heavy chain variable region and a light chain variable region of any one of:
- [1] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 3, 4, and 5, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 60, 61, and 62;
- [2] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 6, 7, and 8, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 63, 64, and 65;
- [3] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 9, 10, and 11, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 66, 67, and 68;
- [4] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 12, 13, and 14, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 69, 70, and 71;
- [5] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 15, 16, and 17, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 72, 73, and 74;
- [6] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 18, 19, and 20, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 75, 76, and 77;
- [7] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 21, 22, and 23, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 78, 79, and 80;
- [8] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 24, 25, and 26, and a light chain variable

region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 81, 82, and 83;

[9] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 27, 28, and 29, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 84, 85, and 86;

5

10

15

20

25

30

- [10] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 30, 31, and 32, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 87, 88, and 89;
- [11] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 33, 34, and 35, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 90, 91, and 92;
- [12] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 36, 37, and 38, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 93, 94, and 95;
- [13] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 39, 40, and 41, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 96, 97, and 98;
- [14] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 42, 43, and 44, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 99, 100, and 101;
- [15] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 45, 46, and 47, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 102, 103, and 104;
- [16] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 48, 49, and 50, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 105, 106, and 107;
- [17] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 51, 52, and 53, and a light chain variable

region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 108, 109, and 110;

[18] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 54, 55, and 56, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 111, 112, and 113;

5

10

15

20

25

30

- [19] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 57, 58, and 59, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 114, 115, and 116;
- [20] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 231, 233, and 235, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 240, 242, and 244;
- [21] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 266, 268, and 270, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 273, 275, and 277;
- [22] a heavy chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 280, 282, and 284, and a light chain variable region that comprises CDR1, CDR2, and CDR3 comprising the amino acid sequences consisting of SEQ ID NOs: 273, 275, and 277;
- (20) an antibody that comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 118;
- (21) an antibody that comprises a light chain variable region comprising the amino acid sequence of SEQ ID NO: 120;
- (22) an antibody that comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 118 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 120;
 - (23) an antibody comprising the amino acid sequence of SEQ ID NO: 122 or 264;
- (24) an antibody that comprises a heavy chain variable region, wherein said heavy chain variable region comprises FR1, FR2, FR3, and FR4 consisting of amino acid sequences of any one of:
 - [1] SEQ ID NOs: 230, 232, 234, and 236
 - [2] SEQ ID NOs: 265, 267, 269, and 271
 - [3] SEQ ID NOs: 279, 281, 283, and 285.

- (25) an antibody comprising a light chain variable region, wherein said light chain variable region comprises FR1, FR2, FR3, and FR4 consisting of amino acid sequences of any one of:
 - [1] SEQ ID NOs: 239, 241, 243, and 245
 - [2] SEQ ID NOs: 272, 274, 276, and 278;

5

10

15

20

25

30

- (26) an antibody that comprises a heavy chain variable region and a light chain variable region of any one of:
- [1] a heavy chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 230, 232, 234, and 236, and a light chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 239, 241, 243, and 245;
- [2] a heavy chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 265, 267, 269, and 271, and a light chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 272, 274, 276, and 278;
- [3] a heavy chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEQ ID NOs: 279, 281, 283, and 285, and a light chain variable region which comprises FR1, FR2, FR3, and FR4 having the amino acid sequences consisting of SEO ID NOs: 272, 274, 276, and 278;
- (27) an antibody that comprises a heavy chain variable region, wherein said heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 229, 256, or 262;
- (28) an antibody that comprises a light chain variable region, wherein said light chain variable region comprises the amino acid sequence of SEQ ID NO: 238 or 258;
- (29) an antibody that comprises a heavy chain variable region and a light chain variable region of any one of:
- [1] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 229, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 238;
- [2] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 256, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 258;
- [3] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 262, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 258;
 - (30) an antibody that comprises the amino acid sequence of SEQ ID NO: 2, 254, or 260;
- (31) an antibody having an activity equivalent to that of an antibody of any one of (17) to (30), wherein said antibody comprises the amino acid sequence set forth in any one of (17) to (30), in which one or more amino acids have been substituted, deleted, added and/or inserted;
 - (32) an antibody that recognizes an epitope recognized by an antibody of any one of

(17) to (31);

5

10

15

20

25

30

35

- (33) an antibody that recognizes the region of amino acids 26 to 274 of human Mpl;
- (34) an antibody of any one of (1) to (33), which has TPO agonistic activity;
- (35) a polynucleotide encoding an antibody of any one of (1) to (34);
- (36) a polynucleotide hybridizing to the polynucleotide of (35) under stringent conditions, wherein said polynucleotide encodes an antibody having activity equivalent to that of an antibody of any one of (1) to (34);
 - (37) a vector comprising the polynucleotide of (35) or (36);
 - (38) a host cell that carries the polynucleotide of (35) or (36), or the vector of (37); and
- (39) a pharmaceutical composition comprising an antibody of any one of (1) to (34). [Effects of the Invention]

[0014]

Recombinant human TPOs have been tested as therapeutic agents for chemotherapy-induced thrombocytopenia in various clinical trials. In these trials, a major problem that was reported was the production of anti-TPO antibody in TPO-treated patients (Junzhi Li, et al., Blood (2001) 98: 3241-324; Saroj Vandhan-Raj, et al., Ann. Intern. Med. (2000) 132: 364-368). Specifically, production of neutralizing antibodies that inhibit endogenous TPO activity, and the resulting onset of thrombocytopenia, were reported. Administration of agonistic minibodies (low molecular weight antibodies) against anti-TPO receptor of the present invention does not induce the production of antibodies against endogenous TPO. Furthermore, since antibody miniaturization results in increased specific activity and short half-life in blood, the effective concentration in blood can be easily regulated, presenting a further clinical advantage. Accordingly, the present antibodies are expected to be therapeutic agents for thrombocytopenia which are more effective than naturally-occurring TPO or its agonistic antibodies. Furthermore, since minibodies are not glycosylated, expression systems for expressing the recombinant proteins are not limited, and minibodies can be produced in any expression system such as cell lines from mammals, yeast, insect cells, and E. coli. Since binding specificity against mutant TPO receptor is different from that of TPO, minibodies are expected to bind specific mutants and show agonistic activity against mutated TPO receptor detected in the CAMT patients, who genetically have mutated TPO receptor and develop thrombocytopenia.

[Best Mode for Carrying Out the Invention]

[0015]

The present invention provides antibodies that bind to the TPO receptor (Mpl).

[0016]

The antibodies of the present invention comprise all types of antibodies, including

antibodies with modified amino acid sequences, such as minibodies, humanized antibodies, and chimeric antibodies; antibodies that have been modified by binding with other molecules (for example, polymers such as polyethylene glycol); and antibodies whose sugar chains have been modified.

[0017]

5

10

15

20

25

30

35

Mpl of the present invention may be a mutant receptor. A mutant receptor of the present invention is usually a receptor that exists at a frequency lower than 50%, preferably lower than 20%, more preferably lower than 10%, and even more preferably lower than 1%. The frequency is generally calculated using randomly selected subjects. However, the frequency may vary depending on the country, area, sex, and such. Therefore, the frequency may also be calculated, for example, within a defined country or area, such as Japan, the United States, and Europe, or calculated for one sex. When there are two or more mutations in a receptor, the frequency may be calculated for multiple mutation sites or for any one of the mutation sites. Mutant receptors are preferably evaluated by a frequency as described above. However, mutant receptors can also be evaluated, for example, by their signal transducing ability and such. Specifically, for example, when two different receptors are present, the one with stronger transducing signals upon natural ligand-binding maybe be used as a non-mutant type receptor, and the one with weaker transducing signals as a mutant receptor.

[0018]

In one embodiment, the mutant receptors of the present invention comprise receptors that are associated with disease onset. The phrase "mutant receptors associated with disease onset" means that the loss of reactivity to a natural ligand becomes part of the reason that triggers disease onset. In the present invention, the mutant receptor may be a contributing factor, but not necessarily the sole factor triggering disease onset. Many reports have been previously published that describe the association of mutant receptors with disease onset. In addition to those that have been reported, associations of mutant receptors and disease onset can also be identified by statistical analysis methods (for example, correlation analyses). Correlation analyses, also called "case control studies", are well known to those skilled in the art (for example, Nishimura, Y., 1991, "Statistical analysis of polymorphisms", Saishin Igaku, 46:909-923; Oka, A. et al., Hum. Mol. Genetics (1990) 8: 2165-2170; Ota, M. et al., Am. J. Hum. Genet. (1999) 64: 1406-1410; Ozawa, A. et al., Tissue Antigens (1999) 53: 263-268). For example, the correlation between a mutant receptor and a disease can be studied by computing the frequency of the mutant receptor in patients and healthy subjects, and testing whether the patient population has a higher mutant receptor frequency. Typically, differences in frequency are evaluated using the χ -test. χ is obtained by the equation $\chi^2 = \Sigma$ (observed value - expected value)²/expected value. A p value is obtained from the χ^2 value determined. Based on this p

value, it can be determined whether there is a correlation between the mutant receptor and the disease. For example, when p<0.05, the mutant receptor is considered to correlate with the disease. Mutant thrombopoietin (TPO) receptors have already been reported (Matthias Ballmaier *et al.*, BLOOD (2001) 97 (1): 139; and others).

[0019]

5

10

15

20

25

30

35

It is preferable that the antibodies of the present invention have agonistic activity against Mpl.

In a preferred embodiment, the antibodies of the present invention comprise, for example, minibodies.

The minibodies comprise antibody fragments lacking portions of the whole antibody (for example, whole IgG). The minibodies are not particularly limited as long as they have binding activity to their antigens. The minibodies of the present invention have markedly higher activities compared to their corresponding whole antibodies. There are no particular limitations on the antibody fragments of the present invention as long as they are portions of the whole antibody, and preferably contain heavy chain variable regions (VH) and/or light chain variable regions (VL). The amino acid sequences of VH or VL may contain substitutions, deletions, additions and/or insertions. Furthermore, the antibody fragment may also lack portions of VH or/and VL, as long as it has binding ability to its antigen. In addition, the variable regions may be chimerized or humanized. Such antibody fragments include, for example, Fab, Fab', F(ab')₂, and Fv. An example of a minibody includes Fab, Fab', F(ab')₂, Fv, scFv (single-chain Fv), diabody, and sc(Fv)2 (single-chain (Fv)₂).

[0020]

Herein, an "Fv" fragment is the smallest antibody fragment and contains a complete antigen recognition site and a binding site. The "Fv" fragment is a dimer (VH-VL dimer) in which a single VH and a single VL are strongly linked by a non-covalent bond. The three complementarity-determining regions (CDRs) of each of the variable regions interact with each other to form an antigen-binding site on the surface of the VH-VL dimer. Six CDRs confer the antigen-binding site of an antibody. However, a single variable region (or a half of Fv containing only three CDRs specific to an antigen) alone is also capable of recognizing and binding an antigen although its affinity is lower than the affinity of the entire binding site.

[0021]

scFv contains the VH and VL regions of an antibody, and these regions exist on a single polypeptide chain. Generally, an Fv polypeptide further contains a polypeptide linker between VH and VL, and therefore an scFv can form a structure required for antigen binding. See, Pluckthun "The Pharmacology of Monoclonal Antibodies" Vol. 113 (Rosenburg and Moore eds. (Springer Verlag, New York, pp.269-315, 1994) for the review of scFv. In the present invention,

linkers are not especially limited as long as they do not inhibit expression of antibody variable regions linked at both ends of the linkers.

[0022]

5

10

15

20

25

30

35

The term "diabody" refers to a bivalent antibody fragment constructed by gene fusion (Holliger P et al., Proc. Natl. Acad. Sci. USA (1993) 90: 6444-6448; EP 404,097; WO 93/11161 and others). Diabodies are dimers comprising two polypeptide chains, where each polypeptide chain comprises a VL and a VH connected with a linker short enough to prevent interaction of these two domains, for example, a linker of about five residues. The VL and VH encoded on the same polypeptide chain will form a dimer because the linker between them is too short to form a single-chain variable region fragment. As a result, the polypeptide chains form a dimer, and thus the diabody has two antigen binding sites.

[0023]

 $sc(Fv)_2$ is a single-chain minibody produced by linking two units of VH and two units of VL with linkers and such (Hudson *et al.*, J Immunol. Methods (1999) 231:177-189). $sc(Fv)_2$ exhibits a particularly high agonistic activity compared to the whole antibody and other minibodies. $sc(Fv)_2$ can be produced, for example, by linking two scFv molecules.

In a preferable antibody, the two VH units and two VL units are arranged in the order of VH, VL, VH, and VL ([VH]-linker-[VL]-linker-[VH]-linker-[VL]) beginning from the N terminus of a single-chain polypeptide.

[0024]

The order of the two VH units and two VL units is not limited to the above arrangement, and they may be arranged in any order. Examples of the arrangements are listed below.

[VL]-linker-[VH]-linker-[VL]

[VH]-linker-[VL]-linker-[VH]

[VH]-linker-[VH]-linker-[VL]-linker-[VL]

[VL]-linker-[VL]-linker-[VH]-linker-[VH]

[VL]-linker-[VH]-linker-[VH]

[0025]

The linkers to be used for linking the variable regions of an antibody comprise arbitrary peptide linkers that can be introduced by genetic engineering, synthetic linkers, and linkers disclosed in, for example, Holliger, P. et al., Protein Engineering (1996) 9 (3): 299-305.

Peptide linkers are preferred in the present invention. There are no limitations as to the length of the peptide linkers. The length can be selected accordingly by those skilled in the art depending on the purpose, and is typically 1-100 amino acids, preferably 3-50 amino acids, more preferably 5-30 amino acids, and even more preferably 12-18 amino acids (for example, 15 amino acids).

[0026]

For example, such peptide linkers include:

Ser

Gly Ser

5 Gly Gly Ser

Ser Gly Gly

Gly Gly Gly Ser

Ser Gly Gly Gly

Gly Gly Gly Ser

10 Ser Gly Gly Gly Gly

Gly Gly Gly Gly Ser

Ser Gly Gly Gly Gly

Gly Gly Gly Gly Ser

Ser Gly Gly Gly Gly Gly

15 (Gly Gly Gly Gly Ser)_n

20

25

30

35

(Ser Gly Gly Gly Gly)_n

where n is an integer of 1 or larger. The lengths and sequences of peptide linkers can be selected accordingly by those skilled in the art depending on the purpose.

In an embodiment of the present invention, a particularly preferable $sc(Fv)_2$ includes, for example, the $sc(Fv)_2$ below.

[0027]

[VH]-peptide linker (15 amino acids)-[VL]-peptide linker (15 amino acids)-[VL]

[0028]

Synthetic linkers (chemical crosslinking agents) include crosslinking agents routinely used to crosslink peptides, for example, N-hydroxy succinimide (NHS), disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl) suberate (BS³), dithiobis(succinimidyl propionate) (DSP), dithiobis(sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis(succinimidyl succinate) (EGS), ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis[2-(succinimidoxycarbonyloxy)ethyl] sulfone (BSOCOES), and bis[2-(sulfosuccinimidoxycarbonyloxy)ethyl] sulfone (sulfo-BSOCOES). These crosslinking agents are commercially available.

[0029]

In general, three linkers are required to link four antibody variable regions together.

The linkers to be used may be of the same type or different types. In the present invention, a preferable minibody is a diabody, even more preferably, an sc(Fv)₂. Such a minibody can be

prepared by treating an antibody with an enzyme, for example, papain or pepsin, to generate antibody fragments, or by constructing DNAs encoding those antibody fragments and introducing them into expression vectors, followed by expression in an appropriate host cell (see, for example, Co, M. S. *et al.*, J. Immunol. (1994) 152: 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178: 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178: 497-515; Lamoyi, E., Methods Enzymol. (1986) 121: 652-663; Rousseaux, J. *et al.*, Methods Enzymol. (1986) 121: 663-669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9: 132-137).

[0030]

5

10

15

20

25

30

An antibody having exceedingly high agonistic activity can be prepared by reducing the molecular weight of a full-length antibody, particularly by converting it into an sc(Fv)₂.

In a preferred embodiment, the antibodies of the present invention comprise modified antibodies, such as chimeric antibodies and humanized antibodies that bind to Mpl. These modified antibodies can be produced by known methods.

[0031]

Chimeric antibodies are antibodies prepared by combining sequences derived from different animal species, and include for example, antibodies comprising the heavy chain and light chain variable regions of a murine antibody, and the heavy chain and light chain constant regions of a human antibody. Chimeric antibodies can be prepared by known methods. For example, a DNA encoding the V region of an antibody is linked to a DNA encoding the C region of a human antibody, and the construct is inserted into an expression vector and introduced into a host to produce chimeric antibodies.

[0032]

Humanized antibodies are also referred to as "reshaped human antibodies". Such a humanized antibody is obtained by transferring the complementarity-determining region (CDR) of an antibody derived from a non-human mammal, for example mouse, to the complementarity-determining region of a human antibody, and the general gene recombination procedure for this is also known (see European Patent Application No. 125023 and WO 96/02576).

[0033]

Specifically, a DNA sequence designed to link a murine antibody CDR to the framework region (FR) of a human antibody can be synthesized by PCR, using primers prepared from several oligonucleotides containing overlapping portions of both CDR and FR terminal regions (see methods described in WO 98/13388).

35 [0034]

The human antibody framework region to be linked by CDR is selected in order to form

a favorable antigen-binding site in the complementarity-determining region. Amino acids of the framework region in the antibody variable region may be substituted, as necessary, for the complementarity-determining region of the reshaped human antibody to form a suitable antigen-binding site (Sato, K. *et al.*, Cancer Res. (1993) 53: 851-856).

[0035]

5

10

15

20

25

30

35

The constant region of a human antibody is used as the constant region of a chimeric antibody or humanized antibody. For example, $C\gamma 1$, $C\gamma 2$, $C\gamma 3$, and $C\gamma 4$ can be used as the H chain, and $C\kappa$ and $C\lambda$ can be used as the L chain. The human antibody constant region may be modified to improve the antibody or the stability of the antibody production.

[0036]

Generally, chimeric antibodies comprise the variable region of an antibody from a non-human mammal and the constant region derived from a human antibody. On the other hand, humanized antibodies comprise the complementarity-determining region of an antibody from a non-human mammal, and the framework region and constant region derived from a human antibody.

[0037]

In addition, after a chimeric antibody or a humanized antibody is prepared, amino acids in the variable region (for example, FR) and the constant region may be replaced with other amino acids, and such.

The origin of the variable regions in chimeric antibodies or that of the CDRs in humanized antibodies is not particularly limited, and may be derived from any type of animal. For example, sequences of murine antibodies, rat antibodies, rabbit antibodies, camel antibodies may be used.

[0038]

In general, it is difficult to chimerize or humanize an antibody without losing the agonistic activity of the original antibody. Nevertheless, the present invention succeeded in preparing humanized antibodies having agonistic activity equivalent to that of the original murine antibody.

[0039]

A preferred humanized antibody of the present invention is an antibody comprising a heavy chain variable region that comprises the amino acid sequence of SEQ ID NO: 229 (humanized heavy chain sequence: hVB22B p-z VH), SEQ ID NO: 256 (humanized heavy chain sequence: hVB22B g-e VH), or SEQ ID NO: 262 (humanized heavy chain sequence: hVB22B e VH); or an antibody comprising a light chain variable region that comprises the amino acid sequence of SEQ ID NO: 238 (humanized light chain hVB22B p-z VL), or SEQ ID NO: 258 (humanized light chain hVB22B g-e VL or hVB22B e VL). In particular, a preferred antibody

is an antibody comprising a heavy chain variable region and a light chain variable region of any one of (1) to (3) indicated below:

- (1) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 229, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 238;
- 5 (2) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 256, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 258;
 - (3) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 262, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 258.

[0040]

10

15

Such antibodies include, for example, antibodies comprising the amino acid sequence of SEQ ID NO: 2, 254, or 260 (humanized sc(Fv)₂ sequence (hVB22B p-z sc(Fv)₂, hVB22B g-e sc(Fv)₂, or hVB22B e sc(Fv)₂).

[0041]

The nucleotide sequence of hVB22B p-z VH is shown in SEQ ID NO: 228; the nucleotide sequence of hVB22B g-e VH is shown in SEQ ID NO: 255; the nucleotide sequence of hVB22B e VH is shown in SEQ ID NO: 261; the nucleotide sequence of hVB22B p-z VL is shown in SEQ ID NO: 237; the nucleotide sequences of hVB22B g-e VL and hVB22B e VL are shown in SEQ ID NO: 257.

[0042]

In the amino acid sequence of SEQ ID NO: 229 (humanized heavy chain sequence: hVB22B p-z VH), SEQ ID NO: 256 (humanized heavy chain sequence: hVB22B g-e VH), or SEQ ID NO: 262 (humanized heavy chain sequence: hVB22B e VH), amino acids 31-35 correspond to CDR1; amino acids 50-66 correspond to CDR2;

amino acids 99-107 correspond to CDR3; amino acids 1-30 correspond to FR1; amino acids 36-49 correspond to FR2; amino acids 67-98 correspond to FR3; and

amino acids 108-118 correspond to FR4.

30 [0043]

In the amino acid sequence of SEQ ID NO: 238 (humanized light chain sequence: hVB22B p-z VL) or SEQ ID NO: 258 (humanized light chain sequence: hVB22B g-e VL or hVB22B e VL),

amino acids 24-39 correspond to CDR1;

amino acids 55-61 correspond to CDR2;

amino acids 94-102 correspond to CDR3;

5

10

15

20

25

30

35

```
amino acids 1-23 correspond to FR1;
amino acids 40-54 correspond to FR2;
amino acids 62-93 correspond to FR3; and
amino acids 103-112 correspond to FR4.
       [0044]
       In the present invention, SEQ ID NOs of the CDRs and FRs in the hVB22B p-z VH
sequence are shown below:
hVB22B p-z VH: FR1/SEQ ID NO: 230
hVB22B p-z VH: CDR1/SEQ ID NO: 231
hVB22B p-z VH: FR2/SEQ ID NO: 232
hVB22B p-z VH: CDR2/SEQ ID NO: 233
hVB22B p-z VH: FR3/SEQ ID NO: 234
hVB22B p-z VH: CDR3/SEQ ID NO: 235
hVB22B p-z VH: FR4/SEQ ID NO: 236.
       [0045]
       In the present invention, SEQ ID NOs of the CDRs and FRs in the hVB22B p-z VL
sequence are shown below:
hVB22B p-z VL: FR1/SEQ ID NO: 239
hVB22B p-z VL: CDR1/SEQ ID NO: 240
hVB22B p-z VL: FR2/SEQ ID NO: 241
hVB22B p-z VL: CDR2/SEQ ID NO: 242
hVB22B p-z VL: FR3/SEQ ID NO: 243
hVB22B p-z VL: CDR3/SEQ ID NO: 244
hVB22B p-z VL: FR4/SEQ ID NO: 245.
       [0046]
       In the present invention, SEQ ID NOs of the CDRs and FRs in the hVB22B g-e VH
sequence are shown below:
hVB22B g-e VH: FR1/SEQ ID NO: 265
hVB22B g-e VH: CDR1/SEQ ID NO: 266
hVB22B g-e VH: FR2/SEQ ID NO: 267
hVB22B g-e VH: CDR2/SEQ ID NO: 268
hVB22B g-e VH: FR3/SEQ ID NO: 269
hVB22B g-e VH: CDR3/SEQ ID NO: 270
hVB22B g-e VH: FR4/SEQ ID NO: 271.
       [0047]
```

In the present invention, SEQ ID NOs of the CDRs and FRs in the hVB22B g-e VL

```
sequence are shown below:
     hVB22B g-e VL: FR1/SEQ ID NO: 272
     hVB22B g-e VL: CDR1/SEQ ID NO: 273
     hVB22B g-e VL: FR2/SEQ ID NO: 274
     hVB22B g-e VL: CDR2/SEQ ID NO: 275
     hVB22B g-e VL: FR3/SEQ ID NO: 276
     hVB22B g-e VL: CDR3/SEQ ID NO: 277
     hVB22B g-e VL: FR4/SEQ ID NO: 278.
             [0048]
10
             In the present invention, SEQ ID NOs of the CDRs and FRs in the hVB22B e VH
     sequence are shown below:
     hVB22B e VH: FR1/SEQ ID NO: 279
     hVB22B e VH: CDR1/SEQ ID NO: 280
     hVB22B e VH: FR2/SEQ ID NO: 281
15
     hVB22B e VH: CDR2/SEQ ID NO: 282
     hVB22B e VH: FR3/SEQ ID NO: 283
     hVB22B e VH: CDR3/SEQ ID NO: 284
     hVB22B e VH: FR4/SEQ ID NO: 285.
             [0049]
20
             In the present invention, SEQ ID NOs of the CDRs and FRs in the hVB22B e VL
     sequence are shown below:
     hVB22B e VL: FR1/SEQ ID NO: 272
     hVB22B e VL: CDR1/SEO ID NO: 273
     hVB22B e VL: FR2/SEQ ID NO: 274
25
     hVB22B e VL: CDR2/SEQ ID NO: 275
     hVB22B e VL: FR3/SEQ ID NO: 276
     hVB22B e VL: CDR3/SEQ ID NO: 277
     hVB22B e VL: FR4/SEQ ID NO: 278.
             [0050]
30
             SEQ ID NOs of the CDRs and FRs in the hVB22B p-z VH sequence and hVB22B p-z
     VL sequence are shown in Figure 18.
             [0051]
            In other embodiments, preferred humanized antibodies of the present invention include:
     humanized antibodies comprising a heavy chain variable region which has FR1, 2, 3, and 4
35
     comprising amino acid sequences of any one of (1) to (3) indicated below:
```

(1) SEQ ID NOs: 230, 232, 234, and 236,

- (2) SEQ ID NOs: 265, 267, 269, and 271,
- (3) SEQ ID NOs: 279, 281, 283, and 285;

humanized antibodies comprising a light chain variable region which has FR1, 2, 3, and 4 comprising amino acid sequences of (1) or (2) listed below:

- 5 (1) SEQ ID NOs: 239, 241, 243, and 245,
 - (2) SEQ ID NOs: 272, 274, 276, and 278;

humanized antibodies comprising a heavy chain variable region which has CDR1, 2 and 3 comprising amino acid sequences of any one of (1) to (3) listed below:

- (1) SEQ ID NOs: 231, 233, and 235,
- 10 (2) SEQ ID NOs: 266, 268, and 270,
 - (3) SEQ ID NOs: 280, 282, and 284; and

humanized antibodies comprising a light chain variable region which has CDR1, 2 and 3 comprising amino acid sequences of (1) or (2) listed below:

- (1) SEQ ID NOs: 240, 242, and 244,
- 15 (2) SEQ ID NOs: 273, 275, and 277.

[0052]

20

In yet another preferred embodiments, preferred humanized antibodies of the present invention include:

humanized antibodies comprising heavy chain and light chain variable regions of any one of (1) to (3) indicated below.

- (1) a heavy chain variable region which comprises FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 230, 232, 234, and 236, respectively, and a light chain variable region which comprises FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 239, 241, 243, and 245, respectively;
- 25 (2) a heavy chain variable region which comprises FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 265, 267, 269, and 271, respectively, and a light chain variable region which comprises FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 272, 274, 276, and 278, respectively;
- (3) a heavy chain variable region which comprises FR1, 2, 3 and 4 comprising the amino acid sequences of SEQ ID NOs: 279, 281, 283, and 285, respectively, and a light chain variable region which comprises FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 272, 274, 276, and 278, respectively; and
 - humanized antibodies comprising heavy chain and light chain variable regions of any one of (1) to (3) indicated below:
- 35 (1) a heavy chain variable region which comprises CDR1, 2, and 3 comprising the amino acid sequences of SEQ ID NOs: 231, 233, and 235, respectively, and a light chain variable region

which comprises CDR1, 2, and 3 comprising the amino acid sequences of SEQ ID NOs: 240, 242, and 244, respectively;

- (2) a heavy chain variable region which comprises CDR1, 2, and 3 comprising the amino acid sequences of SEQ ID NOs: 266, 268, and 270, respectively, and a light chain variable region which comprises CDR1, 2, and 3 comprising the amino acid sequences of SEQ ID NOs: 273, 275, and 277, respectively;
- (3) a heavy chain variable region which comprises CDR1, 2, and 3 comprising the amino acid sequences of SEQ ID NOs: 280, 282, and 284, respectively, and a light chain variable region which comprises CDR1, 2, and 3 comprising the amino acid sequences of SEQ ID NOs: 273, 275, and 277, respectively.

[0053]

5

10

15

20

25

30

35

Chimeric antibodies and humanized antibodies exhibit lower antigenicity in the human body, and thus are expected to be useful when administered to humans for therapeutic purposes.

In one embodiment, the preferred antibodies of the present invention include antibodies that bind to soluble Mpl. The term "soluble Mpl" herein refers to Mpl molecules excluding those expressed on the cell membrane. A specific example of a soluble Mpl is an Mpl lacking the entire or a portion of the transmembrane domain. The transmembrane domain of human Mpl corresponds to amino acids 492 to 513 in SEQ ID NO: 123.

[0054]

An antibody that binds to soluble recombinant Mpl can be used in detailed epitope analysis and kinetic analysis of receptor-ligand binding, as well as for assessing the blood concentration and dynamic behavior of the antibody in *in vivo* tests.

In one embodiment, the preferred antibodies of the present invention include antibodies having binding activity against both human and monkey Mpl. Antibodies having agonistic activity to both human and monkey Mpl are expected to be highly useful since the dynamic behavior and *in vivo* effects of the antibody, which are generally difficult to determine in human body, can be examined with monkeys.

[0055]

The present invention also provides antibodies having agonistic activity to human Mpl and monkey Mpl. Such antibodies may also have binding activity or agonistic activity against Mpl from animals other than humans and monkeys (for example, mice).

[0056]

In addition, the antibodies of the present invention include antibodies with TPO agonistic activity (agonistic activity against Mpl) of EC50 = 100 nM or lower, preferably EC50 = 30 nM or lower, more preferably EC50 = 10 nM or lower.

[0057]

The agonistic activity can be determined by methods known to those skilled in the art, for example, by the method described below.

The sequences for human Mpl (Palacios *et al.*, Cell (1985) 41:727-734; GenBank Accession NO. NM_005373), cynomolgus monkey Mpl (SEQ ID NO: 157), and mouse Mpl (GenBank Accession NO. NM_010823) are already known.

[0058]

In addition, the present invention includes antibodies whose binding activities to soluble Mpl are $KD = 10^{-6}$ M or lower, preferably $KD = 10^{-7}$ M or lower, and more preferably $KD = 10^{-8}$ M or lower.

10 [0059]

5

15

20

25

30

35

In the present invention, whether the binding activity of an antibody to soluble recombinant Mpl is KD = 10^{-6} M or lower can be determined by methods known to those skilled in the art. For example, the activity can be determined using surface plasmon resonance with Biacore. Specifically, soluble MPL-Fc protein is immobilized onto sensor chips. Reaction rate constant can be determined by assessing the interaction between the antibody and the soluble Mpl-Fc protein. The binding activity can be evaluated by ELISA (enzyme-linked immunosorbent assays), EIA (enzyme immunoassays), RIA (radio immunoassays), or fluorescent antibody techniques. For example, in enzyme immunoassays, a sample containing a test antibody, such as purified antibody or culture supernatant of cells producing the test antibody, is added to a plate coated with an antigen to which the test antibody can bind. After incubating the plate with a secondary antibody labeled with an enzyme such as alkaline phosphatase, the plate is washed and an enzyme substrate such as p-nitrophenyl phosphate is added. The antigen-binding activity can then be evaluated by determining the absorbance.

[0060]

There is no specific limitation as to the upper limit of the binding activity; for example, the upper limit may be set within a technically feasible range by those skilled in the art.

However, the technically feasible range may expand with the advancement of technology.

[0061]

In an embodiment, the preferred antibodies of the present invention include antibodies recognizing epitopes that are recognized by any one of the antibodies indicated in (I) to (XII) below. The antibody of any one of (I) to (XII) is preferably a minibody.

[0062]

(I)

Antibody comprising a VH that has CDR1, 2, and 3 comprising the amino acid sequences according to SEQ ID NOs in any one of (1) to (22) indicated below (name of each antibody and the H chain CDR contained in the antibody are indicated inside the parentheses):

```
(1) SEQ ID NOs: 3, 4, and 5 (VA7: H chain CDR1, 2, and 3),
     (2) SEQ ID NOs: 6, 7, and 8 (VA130: H chain CDR1, 2, and 3).
     (3) SEQ ID NOs: 9, 10, and 11 (VA259: H chain CDR1, 2, and 3),
     (4) SEQ ID NOs: 12, 13, and 14 (VB17B: H chain CDR1, 2, and 3),
     (5) SEQ ID NOs: 15, 16, and 17 (VB12B: H chain CDR1, 2, and 3).
     (6) SEQ ID NOs: 18, 19, and 20 (VB140: H chain CDR1, 2, and 3).
     (7) SEQ ID NOs: 21, 22, and 23 (VB33: H chain CDR1, 2, and 3),
     (8) SEQ ID NOs: 24, 25, and 26 (VB45B: H chain CDR1, 2, and 3),
     (9) SEQ ID NOs: 27, 28, and 29 (VB8B: H chain CDR1, 2, and 3),
10
     (10) SEQ ID NOs: 30, 31, and 32 (VB115: H chain CDR1, 2, and 3),
     (11) SEQ ID NOs: 33, 34, and 35 (VB14B: H chain CDR1, 2, and 3),
     (12) SEQ ID NOs: 36, 37, and 38 (VB22B: H chain CDR1, 2, and 3),
     (13) SEQ ID NOs: 39, 40, and 41 (VB16: H chain CDR1, 2, and 3),
     (14) SEQ ID NOs: 42, 43, and 44 (VB157: H chain CDR1, 2, and 3),
15
     (15) SEQ ID NOs: 45, 46, and 47 (VB4B: H chain CDR1, 2, and 3),
     (16) SEQ ID NOs: 48, 49, and 50 (VB51: H chain CDR1, 2, and 3),
     (17) SEQ ID NOs: 51, 52, and 53 (AB317: H chain CDR1, 2, and 3),
     (18) SEQ ID NOs: 54, 55, and 56 (AB324: H chain CDR1, 2, and 3),
     (19) SEQ ID NOs: 57, 58, and 59 (TA136: H chain CDR1, 2, and 3).
20
     (20) SEQ ID NOs: 231, 233, and 235 (hVB22B p-z: H chain CDR1, 2, and 3),
     (21) SEQ ID NOs: 266, 268, and 270 (hVB22B g-e: H chain CDR1, 2, and 3),
     (22) SEQ ID NOs: 280, 282, and 284 (hVB22B e: H chain CDR1, 2, and 3).
             [0063]
     (II)
25
             Antibody comprising a VL which has CDR1, 2, and 3 comprising the amino acid
     sequences according to SEQ ID NOs in any one of (1) to (21) indicated below (name of each
     antibody and the L chain CDR in the antibody are indicated inside the parentheses):
     (1) SEQ ID NOs: 60, 61, and 62 (VA7: L chain CDR1, 2, and 3),
     (2) SEQ ID NOs: 63, 64, and 65 (VA130: L chain CDR1, 2, and 3),
30
     (3) SEQ ID NOs: 66, 67, and 68 (VA259: L chain CDR1, 2, and 3),
     (4) SEQ ID NOs: 69, 70, and 71 (VB17B: L chain CDR1, 2, and 3),
     (5) SEQ ID NOs: 72, 73, and 74 (VB12B: L chain CDR1, 2, and 3),
     (6) SEQ ID NOs: 75, 76, and 77 (VB140: L chain CDR1, 2, and 3)
     (7) SEQ ID NOs: 78, 79, and 80 (VB33: L chain CDR1, 2, and 3),
35
     (8) SEQ ID NOs: 81, 82, and 83 (VB45B: L chain CDR1, 2, and 3),
     (9) SEQ ID NOs: 84, 85, and 86 (VB8B: L chain CDR1, 2, and 3),
```

```
(10) SEQ ID NOs: 87, 88, and 89 (VB115: L chain CDR1, 2, and 3),
     (11) SEQ ID NOs: 90, 91, and 92 (VB14B: L chain CDR1, 2, and 3),
     (12) SEQ ID NOs: 93, 94, and 95 (VB22B: L chain CDR1, 2, and 3),
     (13) SEQ ID NOs: 96, 97, and 98 (VB16: L chain CDR1, 2, and 3),
     (14) SEQ ID NOs: 99, 100, and 101 (VB157: L chain CDR1, 2, and 3),
 5
     (15) SEQ ID NOs: 102, 103, and 104 (VB4B: L chain CDR1, 2, and 3),
     (16) SEQ ID NOs: 105, 106, and 107 (VB51: L chain CDR1, 2, and 3),
     (17) SEQ ID NOs: 108, 109, and 110 (AB317: L chain CDR1, 2, and 3),
     (18) SEQ ID NOs: 111, 112, and 113 (AB324: L chain CDR1, 2, and 3),
10
     (19) SEQ ID NOs: 114, 115, and 116 (TA136: L chain CDR1, 2, and 3),
     (20) SEQ ID NOs: 240, 242, and 244 (hVB22B p-z: L chain CDR1, 2, and 3),
     (21) SEQ ID NOs: 273, 275, and 277 (hVB22B g-e or hVB22B e: L chain CDR1, 2, and 3).
             [0064]
     (III)
15
             Antibody comprising a VH that comprises an amino acid sequence of the SEQ ID NO in
     any one of (1) to (22):
     (1) SEQ ID NO: 124 (VA7: VH),
     (2) SEQ ID NO: 126 (VA130: VH),
     (3) SEQ ID NO: 128 (VA259: VH),
20
     (4) SEQ ID NO: 130 (VB17B: VH),
     (5) SEQ ID NO: 132 (VB12B: VH),
     (6) SEQ ID NO: 134 (VB140: VH),
     (7) SEQ ID NO: 136 (VB33: VH),
     (8) SEQ ID NO: 138 (VB45B: VH),
25
     (9) SEQ ID NO: 140 (VB8B: VH),
     (10) SEQ ID NO: 142 (VB115: VH),
     (11) SEQ ID NO: 144 (VB14B: VH),
     (12) SEQ ID NO: 118 (VB22B: VH),
     (13) SEQ ID NO: 146 (VB16: VH),
30
     (14) SEQ ID NO: 148 (VB157: VH),
     (15) SEQ ID NO: 150 (VB4B: VH),
     (16) SEQ ID NO: 152 (VB51: VH),
     (17) SEQ ID NO: 155 (AB317: VH),
     (18) SEQ ID NO: 159 (AB324: VH),
35
     (19) SEQ ID NO: 162 (TA136: VH),
```

(20) SEQ ID NO: 229 (hVB22B p-z: VH),

```
(21) SEQ ID NO: 256 (hVB22B g-e: VH),
      (22) SEQ ID NO: 262 (hVB22B e: VH).
             [0065]
     (IV)
 5
             Antibody comprising a VL that comprises an amino acid sequence of the SEO ID NO in
      any one of (1) to (21):
      (1) SEQ ID NO: 125 (VA7: VL),
      (2) SEQ ID NO: 127 (VA130: VL),
      (3) SEQ ID NO: 129 (VA259: VL),
10
     (4) SEQ ID NO: 131 (VB17B: VL),
     (5) SEQ ID NO: 133 (VB12B: VL),
      (6) SEQ ID NO: 135 (VB140: VL),
      (7) SEQ ID NO: 137 (VB33: VL),
     (8) SEQ ID NO: 139 (VB45B: VL),
15
     (9) SEQ ID NO: 141 (VB8B: VL),
     (10) SEQ ID NO: 143 (VB115: VL),
     (11) SEQ ID NO: 145 (VB14B: VL),
     (12) SEQ ID NO: 120 (VB22B: VL),
     (13) SEQ ID NO: 147 (VB16: VL),
20
     (14) SEQ ID NO: 149 (VB157: VL),
     (15) SEQ ID NO: 151 (VB4B: VL),
     (16) SEQ ID NO: 153 (VB51: VL),
     (17) SEQ ID NO: 157 (AB317: VL),
     (18) SEQ ID NO: 161 (AB324: VL),
25
     (19) SEQ ID NO: 163 (TA136: VL),
     (20) SEQ ID NO: 238 (hVB22B p-z: VL),
     (21) SEQ ID NO: 258 (hVB22B g-e: VL or hVB22B e: VL).
             [0066]
     (V)
30
             Antibody comprising a VH and VL according to any one of (1) to (22):
     (1) SEQ ID NOs: 3, 4, and 5 (VA7: H chain CDR1, 2, and 3); SEQ ID NOs: 60, 61, and 62
     (VA7: L chain CDR1, 2, and 3),
     (2) SEQ ID NOs: 6, 7, and 8 (VA130: H chain CDR1, 2, and 3), SEQ ID NOs: 63, 64, and 65
     (VA130: L chain CDR1, 2, and 3),
35
     (3) SEQ ID NOs: 9, 10, and 11 (VA259: H chain CDR1, 2, and 3); SEO ID NOs: 66, 67, and 68
     (VA259: L chain CDR1, 2, and 3),
```

- (4) SEQ ID NOs: 12, 13, and 14 (VB17B: H chain CDR1, 2, and 3); SEQ ID NOs: 69, 70, and 71 (VB17B: L chain CDR1, 2, and 3),
- (5) SEQ ID NOs: 15, 16, and 17 (VB12B: H chain CDR1, 2, and 3); SEQ ID NOs: 72, 73, and 74 (VB12B: L chain CDR1, 2, and 3),
- (6) SEQ ID NOs: 18, 19, and 20 (VB140: H chain CDR1, 2, and 3); SEQ ID NOs: 75, 76, and 77 (VB140: L chain CDR1, 2, and 3),
 - (7) SEQ ID NOs: 21, 22, and 23 (VB33: H chain CDR1, 2, and 3); SEQ ID NOs: 78, 79, and 80 (VB33: L chain CDR1, 2, and 3),
 - (8) SEQ ID NOs: 24, 25, and 26 (VB45B: H chain CDR1, 2, and 3); SEQ ID NOs: 81, 82, and
- 10 83 (VB45B: L chain CDR1, 2, and 3),
 - (9) SEQ ID NOs: 27, 28, and 29 (VB8B: H chain CDR1, 2, and 3); SEQ ID NOs: 84, 85, and 86 (VB8B: L chain CDR1, 2, and 3),
 - (10) SEQ ID NOs: 30, 31, and 32 (VB115: H chain CDR1, 2, and 3); SEQ ID NOs: 87, 88, and 89 (VB115: L chain CDR1, 2, and 3),
- 15 (11) SEQ ID NOs: 33, 34, and 35 (VB14B: H chain CDR1, 2, and 3); SEQ ID NOs: 90, 91, and 92 (VB14B: L chain CDR1, 2, and 3),
 - (12) SEQ ID NOs: 36, 37, and 38 (VB22B: H chain CDR1, 2, and 3); SEQ ID NOs: 93, 94, and 95 (VB22B: L chain CDR1, 2, and 3),
 - (13) SEQ ID NOs: 39, 40, and 41 (VB16: H chain CDR1, 2, and 3); SEQ ID NOs: 96, 97, and 98
- 20 (VB16: L chain CDR1, 2, and 3),
 - (14) SEQ ID NOs: 42, 43, and 44 (VB157: H chain CDR1, 2, and 3); SEQ ID NOs: 99, 100, and 101 (VB157: L chain CDR1, 2, and 3),
 - (15) SEQ ID NOs: 45, 46, and 47 (VB4B: H chain CDR1, 2, and 3); SEQ ID NOs: 102, 103, and 104 (VB4B: L chain CDR1, 2, and 3),
- 25 (16) SEQ ID NOs: 48, 49, and 50 (VB51: H chain CDR1, 2, and 3); SEQ ID NOs: 105, 106, and 107 (VB51: L chain CDR1, 2, and 3),
 - (17) SEQ ID NOs: 51, 52, and 53 (AB317: H chain CDR1, 2, and 3); SEQ ID NOs: 108, 109, and 110 (AB317: L chain CDR1, 2, and 3),
 - (18) SEQ ID NOs: 54, 55, and 56 (AB324: H chain CDR1, 2, and 3); SEQ ID NOs: 111, 112,
- 30 and 113 (AB324: L chain CDR1, 2, and 3),
 - (19) SEQ ID NOs: 57, 58, and 59 (TA136: H chain CDR1, 2, and 3); SEQ ID NOs: 114, 115, and 116 (TA136: L chain CDR1, 2, and 3),
 - (20) SEQ ID NOs: 231, 233, and 235 (hVB22B p-z: H chain CDR1, 2, and 3); SEQ ID NOs: 240, 242, and 244 (hVB22B p-z: L chain CDR1, 2, and 3),
- 35 (21) SEQ ID NOs: 266, 268, and 270 (hVB22B g-e: H chain CDR1, 2, and 3); SEQ ID NOs: 273, 275, and 277 (hVB22B g-e: L chain CDR1, 2, and 3),

```
(22) SEQ ID NOs: 280, 282, and 284 (hVB22B e: H chain CDR1, 2, and 3); SEQ ID NOs: 273,
      275, and 277 (hVB22B e: L chain CDR1, 2, and 3).
             [0067]
     (VI)
 5
             Antibody comprising a VH and a VL that comprise the amino acid sequences according
     to SEQ ID NOs in any one of (1) to (22) indicated below:
     (1) SEQ ID NO: 124 (VA7: VH), SEQ ID NO: 125 (VA7: VL),
     (2) SEQ ID NO: 126 (VA130: VH), SEQ ID NO: 127 (VA130: VL),
     (3) SEQ ID NO: 128 (VA259: VH), SEQ ID NO: 129 (VA259: VL),
10
     (4) SEQ ID NO: 130 (VB17B: VH), SEQ ID NO: 131 (VB17B: VL),
     (5) SEQ ID NO: 132 (VB12B: VH), SEQ ID NO: 133 (VB12B: VL),
     (6) SEQ ID NO: 134 (VB140: VH), SEQ ID NO: 135 (VB140: VL),
     (7) SEQ ID NO: 136 (VB33: VH), SEQ ID NO: 137 (VB33: VL),
     (8) SEQ ID NO: 138 (VB45B: VH), SEQ ID NO: 139 (VB45B: VL),
15
     (9) SEQ ID NO: 140 (VB8B: VH), SEQ ID NO: 141 (VB8B: VL),
     (10) SEQ ID NO: 142 (VB115: VH), SEQ ID NO: 143 (VB115: VL),
     (11) SEQ ID NO: 144 (VB14B: VH), SEQ ID NO: 145 (VB14B: VL),
     (12) SEQ ID NO: 118 (VB22B: VH), SEQ ID NO: 120 (VB22B: VL),
     (13) SEQ ID NO: 146 (VB16: VH), SEQ ID NO: 147 (VB16: VL),
20
     (14) SEQ ID NO: 148 (VB157: VH), SEQ ID NO: 149 (VB157: VL),
     (15) SEQ ID NO: 150 (VB4B: VH), SEQ ID NO: 151 (VB4B: VL),
     (16) SEQ ID NO: 152 (VB51: VH), SEQ ID NO: 153 (VB51: VL),
     (17) SEQ ID NO: 155 (AB317: VH), SEQ ID NO: 157 (AB317: VL),
     (18) SEQ ID NO: 159 (AB324: VH), SEQ ID NO: 161 (AB324: VL),
25
     (19) SEQ ID NO: 162 (TA136: VH), SEQ ID NO: 163 (TA136: VL),
     (20) SEQ ID NO: 229 (hVB22B p-z: VH), SEQ ID NO: 238 (hVB22B p-z: VL),
     (21) SEQ ID NO: 256 (hVB22B g-e: VH), SEQ ID NO: 258 (hVB22B g-e: VL),
     (22) SEQ ID NO: 262 (hVB22B e: VH), SEQ ID NO: 258 (hVB22B e: VL).
             [0068]
30
     (VII)
             Antibody comprising the amino acid sequence of SEQ ID NO: 122 (VB22B: scFv).
             [0069]
     (VIII)
             Humanized antibody comprising an amino acid sequence according to any one of SEO
35
     ID NO: 2 (hVB22B p-z: sc(Fv)<sub>2</sub>), SEQ ID NO: 254 (hVB22B g-e: sc(Fv)<sub>2</sub>), and SEQ ID NO:
     260 (hVB22B e: sc(Fv)_2).
```

[0070]

(IX)

5

Antibody comprising a VH which has FR1, 2, 3, and 4 comprising amino acid sequences according to SEQ ID NOs in any one of (1) to (3) indicated below:

- (1) SEQ ID NOs: 230, 232, 234, and 236 (hVB22B p-z: H chain FR1, 2, 3, and 4),
 - (2) SEQ ID NOs: 265, 267, 269, and 271 (hVB22B g-e: H chain FR1, 2, 3, and 4),
 - (3) SEQ ID NOs: 279, 281, 283, and 285 (hVB22B e: H chain FR1, 2, 3, and 4). [0071]

(X)

- Antibody comprising a VL which has FR1, 2, 3 and 4 comprising amino acid sequences according to SEQ ID NOs in any one of (1) or (2) indicated below:
 - (1) SEQ ID NOs: 239, 241, 243, and 245 (hVB22B p-z: L chain FR1, 2, 3, and 4),
 - (2) SEQ ID NOs: 272, 274, 276, and 278 (hVB22B g-e or hVB22B e: L chain FR1, 2, 3, and 4). [0072]
- 15 (XI)

Antibody comprising VH and VL according to any one of (1) to (3) indicated below:

- (1) VH having FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 230, 232, 234, and 236, respectively, and VL having FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 239, 241, 243, and 245, respectively;
- 20 (2) VH having FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 265, 267, 269, and 271, respectively, and VL having FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 272, 274, 276, and 278, respectively;
 - (3) VH having FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 279, 281, 283, and 285, respectively, and VL having FR1, 2, 3, and 4 comprising the amino acid sequences of SEQ ID NOs: 272, 274, 276, and 278, respectively.

[0073]

(XII)

25

30

35

Antibody comprising the amino acid sequence of SEQ ID NO: 264 (VB22B: $sc(Fv)_2$). [0074]

An antibody comprising an amino acid sequence of any one of (I) to (XII) indicated above, in which one or more amino acids have been substituted, deleted, added, and/or inserted, wherein the antibody has activity equivalent to that of the antibody of any one of (I) to (XII).

[0075]

Herein, the phrase "functionally equivalent" means that an antibody of interest has a biological or biochemical activity comparable to that of an antibody of the present invention. Such activities include, for example, binding activities and agonistic activities.

[0076]

5

10

15

20

25

30

35

Methods for preparing polypeptides functionally equivalent to a certain polypeptide are well known to those skilled in the art, and include methods of introducing mutations into polypeptides. For example, those skilled in the art can prepare an antibody functionally equivalent to the antibodies of the present invention by introducing appropriate mutations into the antibody using site-directed mutagenesis (Hashimoto-Gotoh, T. *et al.* Gene (1995) 152: 271-275; Zoller, MJ, and Smith, M. Methods Enzymol. (1983) 100: 468-500; Kramer, W. *et al.*, Nucleic Acids Res. (1984) 12: 9441-9456; Kramer, W. and Fritz HJ, Methods Enzymol. (1987) 154: 350-367; Kunkel, TA, Proc. Natl. Acad. Sci. USA. (1985) 82: 488-492; Kunkel, Methods Enzymol. (1988) 85: 2763-2766), or such. Amino acid mutations may occur naturally. Thus, the present invention also comprises antibodies functionally equivalent to the antibodies of the present invention and comprising the amino acid sequences of these antibodies, in which one or more amino acids is mutated. Generally, the number of amino acids that are mutated is 50 amino acids or less, preferably 30 or less, more preferably 10 or less (for example, five amino acids or less).

[0077]

An amino acid is preferably substituted for a different amino acid(s) that allows the properties of the amino acid side-chain to be conserved. Examples of amino acid side chain properties are: hydrophobic amino acids (A, I, L, M, F, P, W, Y, and V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, and T), amino acids comprising the following side chains: aliphatic side chains (G, A, V, L, I, and P); hydroxyl-containing side chains (S, T, and Y); sulfur-containing side chains (C and M); carboxylic acid- and amide-containing side chains (D, N, E, and Q); basic side chains (R, K, and H); aromatic ring-containing side chains (H, F, Y, and W) (amino acids are represented by one-letter codes in parentheses).

[0078]

A polypeptide comprising a modified amino acid sequence, in which one or more amino acid residues is deleted, added, and/or replaced with other amino acids, is known to retain its original biological activity (Mark, D. F. *et al.*, Proc. Natl. Acad. Sci. USA (1984) 81: 5662-5666; Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10: 6487-6500; Wang, A. *et al.*, Science 224: 1431-1433; Dalbadie-McFarland, G. *et al.*, Proc. Natl. Acad. Sci. USA (1982) 79: 6409-6413).

[0079]

Fusion proteins containing antibodies that comprise the amino acid sequence of an antibody of the present invention, in which two or more amino acid residues have been added, are included in the present invention. The fusion protein results from a fusion between one of the above antibodies and a second peptide or protein, and is included in the present invention.

The fusion protein can be prepared by ligating a polynucleotide encoding an antibody of the present invention and a polynucleotide encoding a second peptide or polypeptide in frame, inserting this into an expression vector, and expressing the fusion construct in a host. Some techniques known to those skilled in the art are available for this purpose. The partner peptide or polypeptide to be fused with an antibody of the present invention may be a known peptide, for example, FLAG (Hopp, T. P. *et al.*, BioTechnology (1988) 6: 1204-1210), 6x His consisting of six His (histidine) residues, 10x His, influenza hemagglutinin (HA), human c-myc fragment, VSV-GP fragment, p18HIV fragment, T7-tag, HSV-tag, E-tag, SV40 T antigen fragment, lck tag, α-tubulin fragment, B-tag, Protein C fragment. Other partner polypeptides to be fused with the antibodies of the present invention include, for example, GST (glutathione-S-transferase), HA (influenza hemagglutinin), immunoglobulin constant region, β-galactosidase, and MBP (maltose-binding protein). A polynucleotide encoding one of these commercially available peptides or polypeptides can be fused with a polynucleotide encoding an antibody of the present invention. The fusion polypeptide can be prepared by expressing the fusion construct.

[0080]

5

10

15

20

25

30

35

As described below, the antibodies of the present invention may differ in amino acid sequence, molecular weight, isoelectric point, presence/absence of sugar chains, and conformation depending on the cell or host producing the antibody, or purification method. However, a resulting antibody is included in the present invention, as long as it is functionally equivalent to an antibody of the present invention. For example, when an antibody of the present invention is expressed in prokaryotic cells, for example *E. coli*, a methionine residue is added to the N terminus of the original antibody amino acid sequence. Such antibodies are included in the present invention.

[0081]

An antibody that recognizes an epitope recognized by the antibody according to any one of (I) to (XII) indicated above is expected to have a high agonistic activity. Such antibodies can be prepared by methods known to those skilled in the art. The antibody can be prepared by, for example, determining the epitope recognized by the antibody according to any one of (I) to (XII) by conventional methods, and using a polypeptide comprising one of the epitope amino acid sequences as an immunogen. Alternatively, the antibody can be prepared by determining the epitopes of conventionally prepared antibodies and selecting an antibody that recognizes the epitope recognized by an antibody of any one of (I) to (XII).

[0082]

In the present invention, a particularly preferred antibody is an antibody that recognizes the epitope recognized by the antibody comprising the amino acid sequence of SEQ ID NO: 2. The antibody comprising the amino acid sequence of SEQ ID NO: 2 is predicted to recognize the

region from Glu 26 to Leu 274, preferably the region from Ala 189 to Gly 245, more preferably the region from Gln 213 to Ala 231 of human Mpl. Thus, antibodies recognizing the region of amino acids 26 to 274, or amino acids 189 to 245, or amino acids 213 to 231 of human Mpl are also included in the present invention.

[0083]

5

10

15

20

25

30

35

Antibodies recognizing regions of amino acids 26 to 274, amino acids 189 to 245, or amino acids 213 to 231 of the human Mpl amino acid sequence (SEQ ID NO: 123) can be obtained by methods known to those skilled in the art. Such antibodies can be prepared by, for example, using a peptide comprising amino acids 26 to 274, amino acids 189 to 245, or amino acids 213 to 231 of the human Mpl amino acid sequence (SEQ ID NO: 123) as an immunogen. Alternatively, such antibodies can be prepared by determining the epitope of a conventionally prepared antibody and selecting an antibody that recognizes the same epitope recognized by an antibody of the present invention.

[0084]

The present invention provides antibodies described above in (I) to (XII). In an embodiment of the present invention, a preferred antibody is the one shown in (V), a more preferred antibody is the one shown in (VII), and a still more preferred is the one shown in (VIII).

[0085]

The present invention also provides vectors comprising polynucleotides encoding the antibodies of the present invention, or polynucleotides which hybridize under stringent conditions to the polynucleotides of the present invention and encode antibodies having activities equivalent to those of the antibodies of the present invention. The polynucleotides of the present invention are polymers comprising multiple bases or base pairs of deoxyribonucleic acids (DNA) or ribonucleic acids (RNA), and are not particularly limited, as long as they encode the antibodies of the present invention. They may also contain non-natural nucleotides. The polynucleotides of the present invention can be used to express antibodies using genetic engineering techniques. The polynucleotides of this invention can also be used as probes in the screening of antibodies functionally equivalent to the antibodies of the present invention. Specifically, DNAs that hybridize under stringent conditions to a polynucleotide encoding an antibody of the present invention, and encode antibodies having activity equivalent to those of the antibodies of the present invention can be obtained by techniques such as hybridization and gene amplification (for example, PCR), using a polynucleotide of the present invention or a portion thereof as a probe. Such DNAs are also included in the polynucleotides of the present invention. Hybridization techniques are well known to those skilled in the art (Sambrook, J et al., Molecular Cloning 2nd ed., 9.47-9.58, Cold Spring Harbor Lab. press, 1989). Such hybridization conditions include, for example, conditions of low stringency. Examples of

conditions of low stringency include post-hybridization washing in 0.1x SSC and 0.1% SDS at 42°C, and preferably in 0.1x SSC and 0.1% SDS at 50°C. More preferable hybridization conditions include those of high stringency. Highly stringent conditions include, for example, washing in 5x SSC and 0.1% SDS at 65°C. In these conditions, the higher the temperature, the higher the expectation of efficiently obtaining polynucleotides with a high homology. However, several factors, such as temperature and salt concentration, can influence hybridization stringency, and those skilled in the art can suitably select these factors to accomplish similar stringencies.

[0086]

5

10

15

20

25

30

35

Antibodies that are encoded by polynucleotides obtained by the hybridization and gene amplification techniques, and are functionally equivalent to the antibodies of the present invention generally exhibit high homology to the antibodies of the this invention at the amino acid level. The antibodies of the present invention include antibodies that are functionally equivalent to the antibodies of the present invention, and exhibit high amino acid sequence homology to the antibodies of this invention. The term "high homology" generally means identity at the amino acid level of at least 50% or higher, preferably 75% or higher, more preferably 85% or higher, still more preferably 95% or higher. Polypeptide homology can be determined by the algorithm described in the report: Wilbur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80: 726-730.

[0087]

When *E. coli* is used as a host, there is no particular limitation as to the type of vector of the present invention, as long as the vector contains an "ori" responsible for its replication in *E. coli* and a marker gene. The "ori" ensures the amplification and mass production of the vector in *E. coli* (for example, JM109, DH5α, HB101, and XL1Blue). The marker gene is used to select the *E. coli* transformants (for example, a drug resistance gene selected by an appropriate drug such as ampicillin, tetracycline, kanamycin, and chloramphenicol). The vectors include, for example, M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script. In addition to the above vectors, for example, pGEM-T, pDIRECT, and pT7 can also be used for the subcloning and excision of cDNAs.

[8800]

An expression vector is especially useful for the type of vectors of the present invention. When an expression vector is expressed, for example, in *E. coli*, it should have the above characteristics in order to be amplified in *E. coli*. Additionally, when *E. coli*, such as JM109, DH5α, HB101, or XL1-Blue are used as the host cell, the vector preferably has a promoter, for example, lacZ promoter (Ward *et al.* Nature (1989) 341: 544-546; FASEB J. (1992) 6: 2422-2427), araB promoter (Better *et al.* Science (1988) 240: 1041-1043), or T7 promoter, that

allows efficient expression of the desired gene in *E. coli*. Other examples of the vectors include pGEX-5X-1 (Pharmacia), "QIAexpress system" (QIAGEN), pEGFP, and pET (where BL21, a strain expressing T7 RNA polymerase, is preferably used as the host).

[0089]

5

10

15

20

25

30

35

Furthermore, the vector may comprise a signal sequence for polypeptide secretion. When producing polypeptides into the periplasm of *E. coli*, the pelB signal sequence (Lei, S. P. *et al.* J. Bacteriol. (1987) 169: 4379) may be used as a signal sequence for polypeptide secretion. For example, calcium chloride methods or electroporation methods may be used to introduce the vector into a host cell.

[0090]

In addition to *E. coli*, expression vectors derived from mammals (e.g., pCDNA3 (Invitrogen), pEGF-BOS (Nucleic Acids Res. (1990) 18 (17): 5322), pEF, pCDM8), insect cells (e.g., "Bac-to-BAC baculovirus expression system" (GIBCO-BRL), pBacPAK8), plants (e.g., pMH1, pMH2), animal viruses (e.g., pHSV, pMV, pAdexLcw), retroviruses (e.g., pZIPneo), yeasts (e.g., "Pichia Expression Kit" (Invitrogen), pNV11, SP-Q01), and *Bacillus subtilis* (e.g., pPL608, pKTH50) may also be used as a vector of the present invention.

[0091]

In order to express proteins in animal cells such as CHO, COS, and NIH3T3 cells, the vector preferably has a promoter necessary for expression in such cells, for example, an SV40 promoter (Mulligan *et al.*, Nature (1979) 277: 108), MMLV-LTR promoter, EF1α promoter (Mizushima *et al.*, Nucleic Acids Res. (1990) 18: 5322), CMV promoter, etc.). It is even more preferable that the vector also carries a marker gene for selecting transformants (for example, a drug-resistance gene selected by a drug such as neomycin and G418). Examples of vectors with such characteristics include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13, and such.

[0092]

In addition, to stably express a gene and amplify the gene copy number in cells, CHO cells that are defective in the nucleic acid synthesis pathway are introduced with a vector containing a DHFR gene (for example, pCHOI) to compensate for the defect, and the copy number is amplified using methotrexate (MTX). Alternatively, a COS cell, which carries an SV40 T antigen-expressing gene on its chromosome, can be transformed with a vector containing the SV40 replication origin (for example, pcD) for transient gene expression. The replication origin may be derived from polyoma virus, adenovirus, bovine papilloma virus (BPV), and such. Furthermore, to increase the gene copy number in host cells, the expression vector may contain, as a selection marker, aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, *E. coli* xanthine guanine phosphoribosyl transferase (Ecogpt) gene,

dihydrofolate reductase (dhfr) gene, and such.

[0093]

5

10

15

20

25

30

35

Next, the vector is introduced into a host cell. The host cells into which the vector is introduced are not particularly limited, for example, *E. coli* and various animal cells are available for this purpose. The host cells may be used, for example, as a production system to produce and express the antibodies of the present invention. *In vitro* and *in vivo* production systems are available for polypeptide production systems. Production systems that use eukaryotic cells or prokaryotic cells are examples of *in vitro* production systems.

[0094]

Eukaryotic cells that can be used are, for example, animal cells, plant cells, and fungal cells. Known animal cells include: mammalian cells, for example, CHO (J. Exp. Med. (1995) 108: 945), COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells such as *Xenopus laevis* oocytes (Valle, *et al.*, Nature (1981) 291: 358-340), or insect cells (e.g., Sf9, Sf21, and Tn5). In the present invention, CHO-DG44, CHO-DXB11, COS7 cells, and BHK cells can be suitably used. Among animal cells, CHO cells are particularly favorable for large-scale expression. Vectors can be introduced into a host cell by, for example, calcium phosphate methods, the DEAE-dextran methods, methods using cationic liposome DOTAP (Boehringer-Mannheim), electroporation methods, lipofection methods.

[0095]

Plant cells include, for example, *Nicotiana tabacum*-derived cells known as a protein production system. Calluses may be cultured from these cells. Known fungal cells include yeast cells, for example, genus *Saccharomyces* such as *Saccharomyces cerevisiae* and *Saccharomyces pombe*; and filamentous fungi, for example, genus *Aspergillus* such as *Aspergillus niger*.

[0096]

Bacterial cells can be used in the prokaryotic production systems. Examples of bacterial cells include *E. coli* (for example, JM109, DH5α, HB101 and such); and *Bacillus subtilis*.

[0097]

Next, the above host cells are cultured. Antibodies can be obtained by transforming the cells with a polynucleotide of interest and *in vitro* culturing of these transformants. Transformants can be cultured using known methods. For example, DMEM, MEM, RPMI 1640, or IMDM may be used as the culture medium for animal cells, and may be used with or without serum supplements such as FBS or fetal calf serum (FCS). Serum-free cultures are also acceptable. The preferred pH is about 6 to 8 during the course of culturing. Incubation is carried out typically at a temperature of about 30 to 40°C for about 15 to 200 hours. Medium is

exchanged, aerated, or agitated, as necessary.

[0098]

On the other hand, production systems using animal or plant hosts may be used as systems for producing polypeptides *in vivo*. For example, a polynucleotide of interest is introduced into an animal or plant and the polypeptide is produced in the body of the animal or plant and then recovered. The "hosts" of the present invention includes such animals and plants.

[0099]

5

10

15

20

25

30

35

Animals to be used for the production system include mammals or insects. Mammals such as goats, pigs, sheep, mice, and cattle may be used (Vicki Glaser SPECTRUM Biotechnology Applications (1993)). Alternatively, the mammals may be transgenic animals.

[0100]

For example, a polynucleotide of interest is prepared as a fusion gene with a gene encoding a polypeptide specifically produced in milk, such as the goat β-casein gene. DNA fragments containing the fusion gene are injected into goat embryos, which are then introduced back to female goats. The desired antibody can be obtained from milk produced by the transgenic goats, which are born from the goats that received the embryos, or from their offspring. Appropriate hormones may be administered to increase the volume of milk containing the antibody produced by the transgenic goats (Ebert, K.M. *et al.*, Bio/Technology (1994) 12: 699-702).

[0101]

Insects, such as silkworms, may also be used. Baculoviruses carrying a polynucleotide encoding an antibody of interest can be used to infect silkworms, and the antibody of interest can be obtained from the body fluids (Susumu, M. *et al.*, Nature (1985) 315: 592-594).

[0102]

Plants used in the production system include, for example, tobacco. When tobacco is used, a polynucleotide encoding an antibody of interest is inserted into a plant expression vector, for example, pMON 530, and then the vector is introduced into a bacterium, such as *Agrobacterium tumefaciens*. The bacteria are then used to infect tobacco such as Nicotiana tabacum, and the desired antibodies can be recovered from the leaves (Julian K.-C. Ma *et al.*, Eur. J. Immunol. (1994) 24: 131-138).

[0103]

The resulting antibody may be isolated from the inside or outside (such as the medium) of host cells, and purified as a substantially pure and homogenous antibody. Methods are not limited to any specific method and any standard method for isolating and purifying antibodies may be used. Polypeptides may be isolated and purified, by selecting an appropriate

combination of, for example, chromatographic columns, filtration, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, and others.

[0104]

5

10

15

20

25

30

35

Chromatographies include, for example, affinity chromatographies, ion exchange chromatographies, hydrophobic chromatographies, gel filtrations, reverse-phase chromatographies, and adsorption chromatographies (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak *et al.*, Cold Spring Harbor Laboratory Press, 1996). These chromatographies can be carried out using liquid phase chromatographies such as HPLC and FPLC. Examples of the affinity chromatography columns include protein A columns and protein G columns. Examples of the proteins A columns include Hyper D, POROS, and Sepharose F. F. (Pharmacia).

[0105]

An antibody can be modified freely and peptide portions deleted by treating the antibody with an appropriate protein modifying enzyme before or after antibody purification. Such protein modifying enzymes include, for example, trypsins, chymotrypsins, lysyl endopeptidases, protein kinases, and glucosidases.

[0106]

Antibodies that bind to Mpl can be prepared by methods known to those skilled in the art.

For example, monoclonal antibody-producing hybridomas can be essentially generated by known technologies as follows: immunizing animals with Mpl proteins or Mpl-expressing cells as sensitized antigens using conventional immunological methods; fusing the obtained immunocytes with known parental cells by conventional cell fusion methods; and screening for monoclonal antibody-producing cells by conventional methods.

[0107]

Specifically, monoclonal antibodies can be prepared by the method below.

First, Mpl protein, which is used as a sensitized antigen for preparing antibodies, is prepared by expressing the Mpl gene/amino acid sequence (GenBank accession number: NM_005373). More specifically, the gene sequence encoding Mpl is inserted into a known expression vector, which is then transfected into an appropriate host cell. The subject human Mpl protein is purified from the host cell or culture supernatant using known methods.

[0108]

The purified Mpl protein is then used as a sensitized antigen. Alternatively, a partial Mpl peptide may be used as a sensitized antigen. In this case, the partial peptide can also be chemically synthesized based on the amino acid sequence of human Mpl.

[0109]

The epitopes of Mpl molecule that are recognized by an anti-Mpl antibody of the present invention are not limited to a particular epitope, and may be any epitope on the Mpl molecule. Thus, any fragment can be used as an antigen for preparing anti-Mpl antibodies of the present invention, as long as the fragment comprises an epitope of the Mpl molecule.

[0110]

5

10

15

20

25

30

35

There is no limitation as to the type of mammalian species to be immunized with the sensitized antigen. However, a mammal is preferably selected based on its compatibility with the parental cell to be used in cell fusion. Generally, rodents (for example, mice, rats, and hamsters), rabbits, and monkeys can be used.

[0111]

Animals can be immunized with a sensitized antigen by known methods such as a routine method of injecting a sensitized antigen into a mammal intraperitoneally or subcutaneously. Specifically, the sensitized antigen is diluted appropriately with phosphate-buffered saline (PBS), physiological saline and such, and then suspended. An adequate amount of a conventional adjuvant, for example, Freund's complete adjuvant, is mixed with the suspension, as necessary. An emulsion is then prepared for administering to a mammal several times over a 4- to 21-day interval. An appropriate carrier may be used for the sensitized antigen in immunization.

[0112]

A mammal is immunized as described above. After a titer increase of target antibody in the serum is confirmed, immunocytes are collected from the mammal and then subjected to cell fusion. Spleen cells are the preferred immunocytes.

[0113]

Mammalian myeloma cells are used as the parental cells to be fused with the above immunocytes. Preferable myeloma cells to be used include various known cell lines, for example, P3 (P3x63Ag8.653) (Kearney JF, et al., J. Immnol. (1979) 123: 1548-1550), P3x63Ag8U.1 (Yelton DE, et al., Current Topics in Microbiology and Immunology (1978) 81: 1-7), NS-1 (Kohler, G. and Milstein, C. Eur. J. Immunol. (1976) 6: 511-519), MPC-11 (Margulies, D. H. et al., Cell (1976) 8: 405-415), SP2/0 (Shulman, M. et al., Nature (1978) 276: 269-270), FO (deSt. Groth, S. F. et al., J. Immunol. Methods (1980) 35: 1-21), S194 (Trowbridge, I. S., J. Exp. Med. (1978) 148: 313-323), and R210 (Galfre, G. et al., Nature (1979) 277: 131-133). [0114]

Cell fusions between the immunocytes and the myeloma cells as described above can be essentially carried out using known methods, for example, a method by Kohler and Milstein (Kohler, G. and Milstein, C., Methods Enzymol. (1981) 73: 3-46).

[0115]

More specifically, the above-described cell fusions are carried out, for example, in a conventional culture medium in the presence of a cell fusion-promoting agent. The fusion-promoting agents include, for example, polyethylene glycol (PEG) and Sendai virus (HVJ). If required, an auxiliary substance such as dimethyl sulfoxide may also be added to improve fusion efficiency.

[0116]

5

10

15

20

25

30

35

The ratio of immunocytes to myeloma cells may be determined at one's own discretion, preferably, for example, one myeloma cell for every one to ten immunocytes. Culture media to be used for the above cell fusions include, for example, media that are suitable for the growth of the above myeloma cell lines, such as RPMI 1640 media and MEM media, and other conventional culture media used for this type of cell culture. In addition, serum supplements such as fetal calf serum (FCS) may also be used in combination.

[0117]

Cell fusion is carried out as follows. As described above, predetermined amounts of immunocytes and myeloma cells are mixed well in the culture medium. PEG solution (for example, mean molecular weight of about 1,000-6,000) pre-heated to 37°C is added to the cell suspension typically at a concentration of 30% to 60% (w/v), and mixed to produce fused cells (hybridomas). Then, an appropriate culture medium is successively added to the mixture, and the sample is centrifuged to remove supernatant. This treatment is repeated several times to remove the unwanted cell fusion-promoting agent and others that are unfavorable to hybridoma growth.

[0118]

Screening of the resulting hybridomas can be carried out by culturing them in a conventional selective medium, for example, hypoxanthine, aminopterin, and thymidine (HAT) medium. Culturing in the above-descried HAT medium is continued for a period long enough (typically, for several days to several weeks) to kill cells (non-fused cells) other than the desired hybridomas. Then, hybridomas are screened for single-cell clones capable of producing the target antibody by conventional limiting dilution methods.

[0119]

In addition to the method for preparing the above-descried hybridomas by immunizing non-human animals with antigens, preferred human antibodies having binding activity to Mpl can also be obtained by: sensitizing human lymphocytes with Mpl *in vitro*; and fusing the sensitized lymphocytes with human myeloma cells capable of dividing permanently (see, Japanese Patent Application Kokoku Publication No. (JP-B) H01-59878 (examined, approved Japanese patent application published for opposition)). Alternatively, it is possible to obtain

human antibodies against Mpl from immortalized cells producing anti-Mpl antibodies. In this method, the cells producing anti-Mpl antibodies are prepared by administering Mpl as an antigen to transgenic animals comprising a repertoire of the entire human antibody genes (see, WO 94/25585, WO 93/12227, WO 92/03918, and WO 94/02602).

[0120]

5

10

15

20

25

30

35

The monoclonal antibody-producing hybridomas thus prepared can be passaged in a conventional culture medium, and stored in liquid nitrogen over long periods of time.

[0121]

Monoclonal antibodies can be prepared from the above-described hybridomas by, for example, a routine procedure of culturing the hybridomas and obtaining antibodies from the culture supernatants. Alternatively, monoclonal antibodies can be prepared by injecting the hybridomas into a compatible mammal; growing these hybridomas in the mammal; and obtaining antibodies from the mammal's ascites. The former method is suitable for preparing highly purified antibodies, while the latter is suitable for preparing antibodies on a large scale.

[0122]

Recombinant antibodies can also be prepared by: cloning an antibody gene from a hybridoma; inserting the gene into an appropriate vector; introducing the vector into a host; and producing the antibodies by using genetic recombination techniques (see, for example, Vandamme, A. M. *et al.*, Eur. J. Biochem. (1990) 192: 767-775).

[0123]

Specifically, an mRNA encoding the variable (V) region of anti-Mpl antibody is isolated from hybridomas producing the anti-Mpl antibodies. For mRNA isolation, total RNAs are first prepared by conventional methods such as guanidine ultracentrifugation methods (Chirgwin, J. M. *et al.*, Biochemistry (1979) 18: 5294-5299), or acid guanidinium

thiocyanate-phenol-chloroform (AGPC) methods (Chomczynski, P. et al., Anal. Biochem. (1987) 162: 156-159), and then the target mRNA is prepared using an mRNA Purification Kit (Pharmacia) and such. Alternatively, the mRNA can be directly prepared using the QuickPrep mRNA Purification Kit (Pharmacia).

[0124]

A cDNA of the antibody V region is synthesized from the resulting mRNA using reverse transcriptase. cDNA synthesis is carried out using the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Seikagaku Co.), or such. Alternatively, cDNA can be synthesized and amplified by the 5'-RACE method (Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA (1988) 85: 8998-9002; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17: 2919-2932) using the 5'-Ampli FINDER RACE Kit (Clontech) and PCR.

[0125]

Target DNA fragments are purified from the obtained PCR products and then ligated with vector DNAs to prepare recombinant vectors. The vectors are introduced into *E. coli* and such, and colonies are selected for preparing the recombinant vector of interest. The target DNA nucleotide sequence is then confirmed by conventional methods such as the dideoxynucleotide chain termination method.

Once a DNA encoding the V region of target anti-Mpl antibody is obtained, the DNA is inserted into an expression vector which comprises a DNA encoding the constant region (C region) of a desired antibody.

[0126]

5

10

15

20

25

30

35

The method for producing anti-Mpl antibodies to be used in the present invention typically comprises the steps of: inserting an antibody gene into an expression vector, so that the gene is expressed under the regulation of expression regulatory regions, such as enhancer and promotor; and transforming host cells with the resulting vectors to express antibodies.

[0127]

For expressing the antibody gene, polynucleotides encoding H chain and L chain, respectively, are inserted into separate expression vectors and co-transfected into a host cell. Alternatively, polynucleotides encoding both H chain and L chain are inserted into a single expression vector and transfected into a host cell (see WO 94/11523).

[0128]

The term "agonistic activity" refers to an activity to induce changes in some biological activities through signal transduction into cells and such, due to the binding of an antibody to a receptor antigen. The biological activities include, for example, proliferation-promoting activities, proliferation activities, viability activities, differentiation-inducing activities, differentiation activities, transcriptional activities, membrane transport activities, binding activities, proteolytic activities, phosphorylation/dephosphorylation activities, oxidation/reduction activities, transfer activities, nucleolytic activities, dehydration activities, cell death-inducing activities, and apoptosis-inducing activities, but is not limited thereto.

[0129]

The term "agonistic activity against Mpl" typically refers to the activity of promoting the differentiation of megakaryocytes or their parental hemopoietic stem cells into platelets, or the activity of stimulating platelet proliferation.

Agonistic activity can be assayed by methods known to those skilled in the art. The agonistic activity may be determined using the original activity or a different activity as an indicator.

[0130]

For example, agonistic activity can be determined by a method using cell growth as an

indicator as described in Examples. More specifically, an antibody whose agonistic activity is to be determined is added to cells which proliferate in an agonist-dependent manner, followed by incubation of the cells. Then, a reagent such as WST-8 which shows a coloring reaction at specific wavelengths depending on the viable cell count, is added to the culture and absorbance is measured. The agonistic activity can be determined using the measured absorbance as an indicator.

[0131]

5

10

15

20

25

30

35

Cells that proliferate in an agonist-dependent manner can also be prepared by methods known to those skilled in the art. For example, when the antigen is a receptor capable of transducing cell growth signals, cells expressing the receptor may be used. Alternatively, when the antigen is a receptor that cannot transduce signals, a chimeric receptor consisting of the intracellular domain of a receptor that transduces cell growth signals and the extracellular domain of a receptor that does not transduce cell growth signals can be prepared for cellular expression. Receptors that transduce cell growth signals include, for example, G-CSF receptors, mpl, neu, GM-CSF receptors, EPO receptors, c-kit, and FLT-3. Cells that can be used to express a receptor include, for example, BaF3, NFS60, FDCP-1, FDCP-2, CTLL-2, DA-1, and KT-3.

[0132]

There is no limitation as to the type of detection indicators to be used for determining agonistic activity, as long as the indicator can monitor quantitative and/or qualitative changes. For example, it is possible to use cell-free assay indicators, cell-based assay indicators, tissue-based assay indicators, and in vivo assay indicators. Indicators that can be used in cell-free assays include enzymatic reactions, quantitative and/or qualitative changes in proteins, DNAs, or RNAs. Such enzymatic reactions include, for example, amino acid transfers, sugar transfers, dehydrations, dehydrogenations, and substrate cleavages. Alternatively, protein phosphorylations, dephosphorylations, dimerizations, multimerizations, hydrolyses, dissociations and such; DNA or RNA amplifications, cleavages, and extensions can be used as the indicator in cell-free assays. For example, protein phosphorylations downstream of a signal transduction pathway may be used as a detection indicator. Alterations in cell phenotype, for example, quantitative and/or qualitative alterations in products, alterations in growth activity, alterations in cell number, morphological alterations, or alterations in cellular properties, can be used as the indicator in cell-based assays. The products include, for example, secretory proteins, surface antigens, intracellular proteins, and mRNAs. The morphological alterations include, for example, alterations in dendrite formation and/or dendrite number, alteration in cell flatness, alteration in cell elongation/axial ratio, alterations in cell size, alterations in intracellular structure, heterogeneity/homogeneity of cell populations, and alterations in cell density. Such

morphological alterations can be observed under a microscope. Cellular properties to be used as the indicator include anchor dependency, cytokine-dependent response, hormone dependency, drug resistance, cell motility, cell migration activity, pulsatory activity, and alteration in intracellular substances. Cell motility includes cell infiltration activity and cell migration activity. The alterations in intracellular substances include, for example, alterations in enzyme activity, mRNA levels, levels of intracellular signaling molecules such as Ca²⁺ and cAMP, and intracellular protein levels. When a cell membrane receptor is used, alterations in the cell proliferating activity induced by receptor stimulation can be used as the indicator. The indicators to be used in tissue-based assays include functional alterations adequate for the subject tissue. In *in vivo* assays, alterations in tissue weight, alterations in the blood system (for example, alterations in blood cell counts, protein contents, or enzyme activities), alterations in electrolyte levels, and alterations in the circulating system (for example, alterations in blood pressure or heart rate).

[0133]

5

10

15

20

25

30

35

The methods for measuring such detection indices are not particularly limited. For example, absorbance, luminescence, color development, fluorescence, radioactivity, fluorescence polarization, surface plasmon resonance signal, time-resolved fluorescence, mass, absorption spectrum, light scattering, and fluorescence resonance energy transfer may be used. These measurement methods are known to those skilled in the art and may be selected appropriately depending on the purpose. For example, absorption spectra can be obtained by using a conventional photometer, plate reader, or such; luminescence can be measured with a luminometer or such; and fluorescence can be measured with a fluorometer or such. Mass can be determined with a mass spectrometer. Radioactivity can be determined with a device such as a gamma counter depending on the type of radiation. Fluorescence polarization can be measured with BEACON (TaKaRa). Surface plasmon resonance signals can be obtained with BIACORE. Time-resolved fluorescence, fluorescence resonance energy transfer, or such can be measured with ARVO or such. Furthermore, a flow cytometer can also be used for measuring. It is possible to use one of the above methods to measure two or more different types of detection indices. A greater number of detection indices may also be examined by using two or more measurement methods simultaneously and/or consecutively. For example, fluorescence and fluorescence resonance energy transfer can be measured at the same time with a fluorometer.

[0134]

The present invention provides pharmaceutical compositions comprising antibodies of this invention. The pharmaceutical compositions comprising antibodies of the present invention are useful for treating and/or preventing thrombocytopenia and such. Time required

for the platelet count to recover to the normal level can be shortened by administering an antibody of the present invention after donation of platelet components. The amount of platelet components at the time of blood collection can be increased by pre-administering an antibody of the present invention.

[0135]

5

10

15

20

25

30

35

When used as pharmaceutical compositions, the antibodies of the present invention can be formulated by methods known to those skilled in the art. For example, the antibodies can be administered parenterally by injection of a sterile solution or suspension in water or other pharmaceutically acceptable solvents. For example, the antibodies can be formulated by appropriately combining with pharmaceutically-acceptable carriers or solvents, specifically, sterile water or physiological saline, vegetable oils, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents, excipients, vehicles, preservatives, binding agents, and such, and mixing at a unit dosage and form required by accepted pharmaceutical implementations. In such formulations, the amount of the thus obtained active ingredient should be within the required range.

[0136]

A sterile composition to be injected can be formulated using a vehicle such as distilled water used for injection, according to standard protocols.

Aqueous solutions used for injections include, for example, physiological saline and isotonic solutions comprising glucose or other adjunctive agents such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride. They may also be combined with an appropriate solubilizing agent such as alcohol, specifically, ethanol, polyalcohol such as propylene glycol or polyethylene glycol, or non-ionic detergent such as polysorbate 80TM or HCO-50, as necessary.

[0137]

Oil solutions include sesame oils and soybean oils, and can be combined with solubilizing agents such as benzyl benzoate or benzyl alcohol. Injection solutions may also be formulated with buffers, for example, phosphate buffers or sodium acetate buffers; analgesics, for example, procaine hydrochloride; stabilizers, for example, benzyl alcohol or phenol; or anti-oxidants. The prepared injections are typically aliquoted into appropriate ampules.

[0138]

The administration is preferably carried out parenterally, specifically, by injection, intranasal administration, intrapulmonary administration, percutaneous administration, or such. Injections include, for example, intravenous injections, intramuscular injections, intraperitoneal injections, and subcutaneous injections. The injection solutions can be also administered systemically or locally.

[0139]

The administration methods can be selected properly according to the patient's age, condition, and such. The applied dose of a pharmaceutical composition comprising an antibody or polynucleotide encoding the antibody may be, for example, in the range of 0.0001 to 1,000 mg/kg body weight. Alternatively, the dosage may be, for example, in the range of 0.001 to 100,000 mg/kg body weight. However, the dosage is not restricted to the values described above. The dosage and administration methods depend on the patient's weight, age, and condition, and are appropriately selected by those skilled in the art.

[Examples]

5

10

15

20

25

30

35

[0140]

The present invention is specifically illustrated below with reference to Examples, but it is not to be construed as being limited thereto.

[0141]

[Example 1] Preparation of anti-human Mpl antibodies

1.1 Establishment of Mpl-expressing BaF3 cell lines

BaF3 cell lines expressing the full-length Mpl gene were established to obtain cell lines that proliferate in a TPO-dependent manner.

A full-length human Mpl cDNA (Palacios, R. et al., Cell (1985) 41: 727-734) (GenBank accession NO. NM_005373) was amplified by PCR. The cDNA was cloned into a pCOS2 expression vector to construct pCOS2-hMplfull. The expression vector pCOS2 was constructed by removing the DHFR gene expression region from pCHOI (Hirata, Y. et al., FEBS Letter (1994) 356: 244-248), where the expression region of the neomycin resistance gene HEF-VH-gγ1 (Sato, K. et al., Mol Immunol. (1994) 31: 371-381) is inserted.

[0142]

The cynomolgus monkey Mpl cDNA (SEQ ID NO: 164) was cloned from total RNA extracted from the bone marrow cells of cynomolgus monkey, using a SMART RACE cDNA Amplification Kit (Clontech). The resulting cynomolgus monkey cDNA was inserted into pCOS2 to construct pCOS2-monkeyMplfull.

Then, the full-length mouse Mpl cDNA (GenBank accession NO. NM_010823) was amplified by PCR, and inserted into pCOS2 to construct pCOS2-mouseMplfull.

[0143]

Each vector (20 μg) prepared as described above was mixed with BaF3 cells (1 x 10⁷ cells/mL) suspended in PBS in Gene Pulser cuvettes. This mixture was then pulsed at 0.33 kV and 950 μFD using a Gene Pulser II (Bio-Rad). The BaF3 cells introduced with the above DNAs by electroporation were added to RPMI 1640 medium (Invitrogen) containing 1 ng/mL mouse interleukin 3 (hereinafter abbreviated as mIL-3; Peprotech), 500 μg/mL Geneticin (Invitrogen), and 10% FBS (Invitrogen), and selected to establish a human Mpl-expressing BaF3

cell line (hereinafter abbreviated as "BaF3-human Mpl"), monkey Mpl-expressing BaF3 cell line (hereinafter abbreviated as BaF3-monkey Mpl), and mouse Mpl-expressing BaF3 cell line (hereinafter abbreviated as "BaF3-mouse Mpl"). Following selection, these cells were cultured and maintained in RPMI 1640 containing 1 ng/mL rhTPO (R&D) and 10% FBS.

[0144]

5

10

15

20

25

30

1.2 Establishment of Mpl-expressing CHO cell lines

CHO cell lines expressing the full-length Mpl gene were established to obtain cell lines to be used for assessing binding activity by flow cytometry.

First, the DHFR gene expression site from pCHOI was inserted into pCXN2 (Niwa, H. et al., Gene (1991) 108: 193-199) at the HindIII site to prepare a pCXND3expression vector. The respective Mpl genes were amplified by PCR using pCOS2-hMplfull, pCOS2-monkeyMplfull, and pCOS2-mouseMplfull as templates, and primers with a His-tag sequence. The PCR products were cloned into pCXND3 to construct pCXND3-hMpl-His, pCXND3-monkey Mpl-His, and pCXND3-mouse Mpl-His, respectively.

[0145]

Vectors thus prepared (25 μ g each) were mixed with a PBS suspension of CHO-DG44 cells (1 x 10⁷ cells/mL) in Gene Pulser cuvettes. The mixture was then pulsed at 1.5 kV and 25 μ FD using Gene Pulser II (Bio-Rad). The CHO cells introduced with these DNAs by electroporation were added to CHO-S-SFMII medium (Invitrogen) containing 500 μ g/mL Geneticin and 1x HT (Invitrogen). A human Mpl-expressing CHO cell line (hereinafter abbreviated as "CHO-human Mpl"), monkey Mpl-expressing CHO cell line (hereinafter abbreviated as "CHO-monkey Mpl"), and mouse Mpl-expressing CHO cell line (hereinafter abbreviated as "CHO-mouse Mpl") were established through selection.

[0146]

1.3 Preparation of soluble human Mpl protein

To prepare soluble human Mpl protein, an expression system using insect Sf9 cells for production and secretion of the protein was constructed as described below.

A DNA construct encoding the extracellular region of human Mpl (Gln 26 to Trp 491) with a downstream FLAG tag was prepared. The construct was inserted into a pBACSurf-1 Transfer Plasmid (Novagen) between the *Pst*I and *Sma*I sites to prepare pBACSurf1-hMpl-FLAG. Then, Sf9 cells were transformed with 4 µg of pBACSurf1-hMpl-FLAG using the Bac-N-Blue Transfection Kit (Invitrogen). The culture supernatant was collected after three-day incubation. Recombinant virus was isolated by plaque assays. The prepared virus stock was used to infect Sf9 cells, and the culture supernatant was collected.

35 [0147]

Soluble human Mpl protein was purified from the obtained culture supernatant as

described below. The culture supernatant was loaded onto a Q Sepharose Fast Flow (Amersham Biosciences) for adsorption, and the adsorbed protein was then eluted with 50 mM Na-phosphate buffer (pH7.2) containing 0.01% (v/v) Tween20 and 500 mM NaCl. After the eluates were loaded onto a FLAG M2-Agarose (Sigma-Aldrich) for adsorption, the protein adsorbed was eluted with 100 mM glycine-HCl buffer (pH3.5) containing 0.01% (v/v) Tween20. Immediately after elution, the fraction obtained was neutralized with 1 M Tris-Cl (pH8.0) and the buffer was exchanged with PBS (-) and 0.01% (v/v) Tween20 using PD-10 columns (Amersham Biosciences). The purified soluble Mpl protein was referred to as "shMpl-FLAG". [0148]

1.4 Preparation of human Mpl-IgG Fc fusion protein

Human fusion protein Mpl-IgG Fc gene was prepared according to the method by Bennett *et al.* (Bennett, B. D. *et al.*, J. Biol. Chem. (1991) 266: 23060-23067). A nucleotide sequence encoding the extracellular region of human Mpl (Gln 26 to Trp 491) was linked to a nucleotide sequence encoding the Fc region of human IgG-γ1 (a region downstream of Asp 216). A *Bst*EII sequence (amino acids: Val-Thr) was attached to the junction as a fusion linker between these two regions. A 19-amino acid signal peptide derived form human IgG H chain variable region was used as the signal sequence. The resulting human fusion protein Mpl-IgG Fc gene was cloned into pCXND3 to construct pCXND3-hMpl-Fc.

[0149]

5

10

15

20

25

30

35

The vector thus prepared (25 μ g) was mixed with a PBS suspension of CHO-DG44 cells (1 x 10⁷ cells/mL) in Gene Pulser cuvettes. The mixture was then pulsed at 1.5 kV and 25 μ FD using Gene Pulser II (Bio-Rad). The CHO cells introduced with the DNA by electroporation were added to CHO-S-SFMII medium containing 500 μ g/mL Geneticin and 1x HT (Invitrogen). shMPL-Fc-expressing CHO cell line (CHO-hMpl-Fc) was then established through selection.

[0150]

Human Mpl-IgG Fc fusion protein was purified from the culture supernatant as described below.

The culture supernatant was loaded onto a Q Sepharose Fast Flow (Amersham Biosciences) for adsorption, and then the adsorbed protein were eluted with 50 mM Na-phosphate buffer (pH7.6) containing 0.01% (v/v) Tween20 and 1 M NaCl. After the eluates were loaded onto a HiTrap protein G HP column (Amersham Biosciences) for adsorption, the adsorbed protein was eluted with 0.1 M glycine-HCl buffer (pH2.7) containing 150 mM NaCl and 0.01% (v/v) Tween20. Immediately after elution, the obtained fraction was neutralized with 1 M Tris-Cl (pH8.0) and the buffer was exchanged with PBS (-) and 0.01% (v/v) Tween20 using PD-10 columns (Amersham Biosciences). The purified soluble Mpl protein was referred to as "hMpl-Fc".

[0151]

5

10

15

20

25

30

35

1.5 Immunization with shMpl-FLAG or BaF3-human Mpl and hybridoma selection

MRL/MpJUmmCrj-lpr/lpr mice (hereinafter abbreviated as "MRL/lpr mice"; purchased from Charles River, Japan) were immunized; the primary immunization was carried out at eight weeks of age. For every single mouse, an emulsion containing 100 µg of shMPL-FLAG combined with Freund's complete adjuvant (H37 Ra; Beckton Dickinson), was administered subcutaneously as the primary injection. As a booster injection, an emulsion containing shMPL-FLAG (50 µg per mouse) combined with Freund's incomplete adjuvant (Beckton Dickinson) was administered subcutaneously. Three mice which have been immunized six times in total were subjected to a final injection of shMPL-FLAG (50 µg per mouse) through the caudal vein. Cell fusion was achieved by mixing the mouse myeloma P3-X63Ag8U1 cells (P3U1; purchased from ATCC) and mouse splenocytes using polyethylene glycol 1500 (Roche Diagnostics). Hybridoma selection in HAT medium began the following day and culture supernatants were obtained. Screening was carried out by ELISA, using immunoplates immobilized with shMpl-FLAG or hMpl-Fc and the assayed cell growth activity of BaF3-human Mpl as an index. In addition, Balb/C mice were immunized eleven times in total by administering BaF3-human Mpl (1.0 x 10⁷ cells per mouse) intraperitoneally over a period of one week to five months. Hybridomas were similarly prepared by cell fusion, and screened using the assayed cell growth activity of BaF3-human Mpl as an index. Positive clones were isolated as single clones by limiting dilution and then cultured in a large scale. The culture supernatants were collected.

[0152]

1.6 Analyses of anti-human Mpl antibodies

Antibody concentrations were determined by carrying out a mouse IgG sandwich ELISA using goat anti-mouse IgG (gamma) (ZYMED) and alkaline phosphatase-goat anti-mouse IgG (gamma) (ZYMED), generating a calibration curve by GraphPad Prism (GraphPad Software; USA), and calculating the antibody concentrations from the calibration curve. Commercially available antibodies of the same isotype were used as standards.

[0153]

Antibody isotypes were determined by antigen-dependent ELISA using isotype-specific secondary antibodies. hMpl-Fc was diluted to 1 µg/mL with a coating buffer (0.1 mM NaHCO₃, pH9.6) containing 0.02% (w/v) NaN₃, and then added to ELISA plates. The plates were incubated overnight at 4°C for coating. The plates were blocked with a diluent buffer (50 mM Tris-HCl (pH8.1) containing 1 mM MgCl₂, 150 mM NaCl, 0.05% (v/v) Tween20, 0.02% (w/v) NaN₃, 1% (w/v) BSA). After the addition of hybridoma culture supernatants, the plates were allowed to stand at room temperature for 1 hr. After washing with a rinse buffer (0.05% (v/v)

Tween20 in PBS), alkaline phosphatase-labeled isotype-specific secondary antibodies were added to the plates. Then, the plates were allowed to stand at room temperature for 1 hr. Color development was carried out using SIGMA104 (Sigma-Aldrich) diluted to 1 mg/mL with a substrate buffer (50 mM NaHCO₃, pH9.8) containing 10 mM MgCl₂, and absorbance was measured at 405 nm using Benchmark Plus (Bio-Rad).

[0154]

5

10

15

20

25

30

35

The binding activities of an antibody to shMpl-FLAG and hMPL-Fc were determined by ELISA. ELISA plates were coated with 1 µg/mL of purified shMpl-FLAG or hMPL-Fc, and blocked with a diluent buffer. Hybridoma culture supernatants were added to the plates, and the plates were allowed to stand at room temperature for 1 hr. Then, alkaline phosphatase-labeled anti-mouse IgG antibodies (Zymed) were added to the plates. Color development was similarly carried out using the above method. Following a one-hour coloring reaction at room temperature, absorbance was measured at 405 nm and EC₅₀ values were computed using GraphPad Prism.

[0155]

CHO-human Mpl cells and CHO-monkey Mpl cells were harvested, and suspended in FACS Buffer (1% FBS/ PBS) to a final concentration of 1 x 10^6 cells/mL. The suspensions were aliquoted into Multiscreen (Millipore) at $100 \,\mu$ l/well, and the culture supernatants were removed by centrifugation. Culture supernatants diluted to $5 \,\mu$ g/mL were added to the plates and incubated on ice for 30 min. The cells were washed once with FACS buffer, and incubated on ice for 30 min following the addition of an FITC-labeled anti-mouse IgG antibody (Beckman Coulter). After incubation, the mixture was centrifuged at 500 rpm for 1 min. The supernatants were removed, and then the cells were suspended in 400 μ L of FACS buffer. The samples were analyzed by flow cytometry using EPICS ELITE ESP (Beckman Coulter). An analysis gate was set on the forward and side scatters of a histogram to include viable cell populations.

[0156]

Agonistic activities of an antibody were evaluated using BaF3-human Mpl and BaF3-monkey Mpl which proliferate in a TPO-dependent manner. Cells of each cell line were suspended at 4 x 10⁵ cells/ml in RPMI 1640/10% FBS (Invitrogen), and each suspension was aliquoted into a 96-well plate at 60μl/well. A 40-μL aliquot of rhTPO (R&D) and hybridoma culture supernatants prepared at various concentrations was added into each well. The plates were then incubated at 37°C under 5% CO₂ for 24 hr. A 10-μL aliquot of the Cell Count Reagent SF (Nacalai Tesque) was added into each well. After incubation for 2 hr, absorbance was measured at 450 nm (and at 655 nm as a control) using a Benchmark Plus. EC₅₀ values were calculated using GraphPad Prism.

The above analysis yielded a total of 163 clones of mouse monoclonal antibodies that bind to human Mpl.

Among the anti-human Mpl antibodies to be described, TA136 was established from mice immunized with BaF-human Mpl and the others were established from mice immunized with shMpl-Flag.

[0157]

5

10

15

20

25

30

35

1.7 Purification of anti-human Mpl antibodies

Anti-human Mpl antibodies were purified from hybridoma culture supernatants as described below.

After the culture supernatants were loaded onto HiTrap protein G HP columns (Amersham Biosciences) for adsorption, the antibodies were eluted with 0.1 M glycine-HCl (pH2.7). Immediately after elution, the fractions were neutralized with 1 M Tris-Cl (pH9.0), dialyzed against PBS for one day, and the buffer was replaced.

[0158]

1.8 Determination of epitopes for the anti-human Mpl antibody VB22B

Since the anti-human Mpl antibody VB22B can be used for Western blotting, a GST-fusion protein containing a partial sequence of human Mpl was constructed for VB22B epitope analysis. MG1 (Gln26 to Trp491) and MG2 (Gln26 to Leu274) regions were each amplified by PCR, and cloned into pGEX-4T-3 (Amersham Biosciences) to be expressed as GST fusion proteins. The resulting plasmid DNAs were transformed into DH5α to give transformants. A final concentration of 1 mM IPTG was added to the transformants in their logarithmic growth phase to induce the expression of GST fusion proteins. The bacterial cells were harvested after two hours of incubation. The cells were lysed by sonication. The lysates were centrifuged in XL-80 Ultracentrifuge (Beckman, Rotor 70.1Ti) at 35,000 rpm for 30 min. The culture supernatants were removed, and then the fusion proteins were purified using GST Purification Modules (Amersham Biosciences). The samples were separated by 10%-SDS-PAGE, and then transferred onto a PVDF membrane. The membrane was Western blotted with the murine antibody VB22B. VB22B was found to recognize both MG-1 and

[0159]

Then, GST fusion proteins containing the respective regions of human Mp1: MG3 (Gln26 to Ala189), MG4 (Gln26 to Pro106), MG5 (Gln26 to Glu259), and MG6 (Gln26 to Gly245) were prepared and analyzed by Western blotting using the same procedure described above. VB22B was found to recognize MG5 and MG6, but not MG3 and MG4. This suggests that the VB22B epitope is located within the (Ala189 to Gly245) region. In addition, GST was fused with MG7 (Gln26 to Ala231) and MG8 (Gln26 to Pro217) to prepare GST fusion

MG-2, indicating that the VB22B epitope is located in the (Gln26 to Leu274) region.

proteins. VB22B recognized MG7 but not MG8, suggesting that the VB22B epitope is located in the (Gln217 to Ala231) region. Furthermore, GST fusion protein containing MG10 (Gln213 to Ala231) was recognized by VB22B, suggesting that the VB22B epitope is located within the limited region of 19 amino acids between Gln213 and Ala231.

[0160]

5

10

15

20

25

30

35

1.9 Kinetic analyses of the antigen-antibody reaction for anti-human Mpl antibody VB22B

Since the anti-human Mpl antibody VB22B binds to soluble recombinant Mpl, kinetic analyses of the antigen-antibody reaction between VB22B IgG and human Mpl-IgG Fc fusion protein were carried out as described in Example 1.4. The Sensor Chip CM5 (Biacore) was placed in Biacore 2000 (Biacore), and human Mpl-IgG Fc fusion protein was immobilized onto the chip by amine-coupling methods. Then, 1.25 to 20 μ g/mL of VB22B IgG solution was prepared using HBS-EP Buffer (Biacore), and injected over the chip surface for 2 min to reveal the binding region. Then, HBS-EP Buffer was injected over the chip surface for 2 min to reveal the dissociation region. VB22B IgG bound to the human Mpl-IgG Fc fusion protein on the sensor chip was removed by injecting 10 mM NaOH over the sensor chip for 15 sec, and the chip was recovered. HBS-EP Buffer was used as the running buffer, and the flow rate was 20 μ L/min. Using the BIAevaluation Version 3.1 (Biacore) software, the reaction rate constant at each concentration was calculated from the sensorgrams. The dissociation constant (KD) for VB22B IgG was determined to be $1.67 \pm 0.713 \times 10^{-9}$ M.

[0161]

[Example 2] Preparation of single-chain anti-human Mpl antibodies

Among the prepared anti-human Mpl antibodies, 23 types of antibodies, which exhibit higher binding activities and agonistic activities, were selected to construct expression systems for single-chain antibodies using genetic engineering techniques. An exemplary method for constructing a single-chain antibody derived from the anti-human Mpl antibody VB22B is described below.

[0162]

2.1 Cloning of the anti-human Mpl antibody variable region

The variable region was amplified by RT-PCR using total RNA extracted from hybridomas producing anti-human Mpl antibodies. Total RNA was extracted from 1×10^7 hybridoma cells using the RNeasy Plant Mini Kit (QIAGEN).

[0163]

A 5'-terminal fragment of the gene was amplified from 1 μg of total RNA by the SMART RACE cDNA Amplification Kit (Clontech), using a synthetic oligonucleotide MHC-IgG2b (SEQ ID NO: 166) complementary to mouse IgG2b constant region or a synthetic oligonucleotide kappa (SEQ ID NO: 167) complementary to mouse κ chain constant region.

Reverse transcription was carried out at 42°C for 1.5 hr.

[0164]

The composition of the PCR reaction solution (50 µL in total) is shown below.

10x Advantage 2 PCR Buffer (Clontech)	5 μL
10x Universal Primer A Mix (Clontech)	5 μL
dNTPs (dATP, dGTP, dCTP, and dTTP) (Clontech)	0.2 mM
Advantage 2 Polymerase Mix (Clontech)	1 μL
Reverse transcription product	2.5 μL
Synthetic oligonucleotide, MHC-IgG2b or kappa	10 pmol
[0165]	

[0165]

The PCR reaction conditions were:

94°C (initial temperature) for 30 sec;

five cycles of 94°C for 5 sec and 72°C for 3 min;

five cycles of 94°C for 5 sec, 70°C for 10 sec, and 72°C for 3 min;

25 cycles of 94°C for 5 sec, 68°C for 10 sec, and 72°C for 3 min;

and final extension was at 72°C for 7 min.

[0166]

The PCR products were purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN), and cloned into a pGEM-T Easy Vector (Promega). The nucleotide sequence was then determined using the ABI 3700 DNA Analyzer (Perkin Elmer).

15 [0167]

5

10

20

25

30

The nucleotide sequence of cloned VB22B H chain variable region (hereinafter abbreviated as "VB22B-VH") is shown in SEQ ID NO: 117, and its amino acid sequence is shown in SEQ ID NO: 118. The nucleotide sequence of the L chain variable region (hereinafter abbreviated as "VB22B-VL") is shown in SEQ ID NO: 119, and its amino acid sequence is shown in SEQ ID NO: 120.

[0168]

2.2 Preparation of expression vectors for anti-human Mpl diabodies

The gene encoding VB22B single-chain Fv (hereinafter abbreviated as "VB22B diabody") containing a five-amino acid linker sequence was constructed, by linking a nucleotide sequence encoding a (Gly4Ser)₁ linker to the VB22B-VH-encoding gene at its 3' end and to the VB22B-VL-encoding gene at its 5' end; both of which have been amplified by PCR.

[0169]

The VB22B-VH forward primer, 70·115HF, (SEQ ID NO: 168) was designed to contain an *Eco*RI site. The VB22B-VH reverse primer, 33·115HR, (SEQ ID NO: 169) was designed to hybridize to a DNA encoding the C terminus of VB22B-VH, and to have a nucleotide sequence

encoding the (Gly4Ser)₁ linker and a nucleotide sequence hybridizing to the DNA encoding the N terminus of VB22B-VL. The VB22B-VL forward primer, 33·115LF, (SEQ ID NO: 170) was designed to have a nucleotide sequence encoding the N terminus of VB22B-VL, a nucleotide sequence encoding the (Gly4Ser)₁ linker, and a nucleotide sequence encoding the C terminus of VB22B-VH. The VB22B-VL reverse primer, 33·115LR, (SEQ ID NO: 171) was designed to hybridize to a DNA encoding the C terminus of VB22B-VL and to have a nucleotide sequence encoding a FLAG tag (Asp Tyr Lys Asp Asp Asp Asp Lys/SEQ ID NO: 172) and a *Not*I site.

[0170]

5

15

In the first round of PCR, two PCR products: one containing VB22B-VH and a linker sequence, and the other containing VB22B-VL and the identical linker sequence, were synthesized by the procedure described below.

The composition of the PCR reaction solution (50 µL in total) is shown below.

10x PCR Buffer (TaKaRa)

dNTPs (dATP, dGTP, dCTP, and dTTP) (TaKaRa)

DNA polymerase TaKaRa Ex Taq (TaKaRa)

pGEM-T Easy vector comprising VB22B-VH or VB22B-VL gene

Synthetic oligonucleotides, 70·115HF and 33·115HR, or 33·115LF

and 33·115LR

[0171]

The PCR reaction conditions were:

94°C (initial temperature) for 30 sec;

five cycles of: 94°C for 15 sec and 72°C for 2 min;

five cycles of 94°C for 15 sec and 70°C for 2 min;

28 cycles of 94°C for 15 sec and 68°C for 2 min;

and final extension was at 72°C for 5 min.

20 [0172]

After the PCR products of about 400 bp were purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN), the second-round PCR was carried out using aliquots of the respective PCR products according to the protocol described below.

The composition of the PCR reaction solution (50 µL in total) is shown below.

10x PCR Buffer (TaKaRa)	5 μL
dNTPs (dATP, dGTP, dCTP, and dTTP) (TaKaRa)	0.4 mM
DNA polymerase TaKaRa Ex Taq (TaKaRa)	2.5 unit
First-round PCR products (two types)	1 μL
Synthetic oligonucleotides, 70·115HF and 33·115LR	10 pmol

25 [0173]

The reaction conditions were:

94°C (initial temperature) for 30 sec;
five cycles of 94°C for 15 sec and 72°C for 2 min;
five cycles of 94°C for 15 sec and 70°C for 2 min;
28 cycles of 94°C for 15 sec and 68°C for 2 min;
and final extension was at 72°C for 5 min.

[0174]

The PCR products of about 800 bp were purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN), and then digested with *Eco*RI and *Not*I (both from TaKaRa). The resulting DNA fragments were purified using the QIAquick PCR Purification Kit (QIAGEN), and then cloned into pCXND3 to prepare pCXND3-VB22B db.

[0175]

2.3 Preparation of expression vectors for anti-human Mpl antibody sc(Fv)₂

To prepare expression plasmids for the modified antibody $[sc(Fv)_2]$ comprising two units of H chain variable region and two units of L chain variable region derived from VB22B, the above-described pCXND3-VB22B db was modified by PCR using the procedure shown below. The process for constructing the $sc(Fv)_2$ gene is illustrated in Fig. 1.

[0176]

5

10

15

20

25

30

35

First, PCR method was carried out to amplify (a) the VB22B-VH-encoding gene in which a nucleotide sequence encoding a 15-amino acid linker (Gly₄Ser)₃ was added to its 3' end; and (b) the VB22B-VL-encoding gene containing the identical linker nucleotide sequence added to its 5' end. The desired construct was prepared by linking these amplified genes. Three new primers were designed in this construction process. The VB22B-VH forward primer, VB22B-fpvu, (primer A; SEQ ID NO: 173) was designed to have an *Eco*RI site at its 5' end and to convert Gln22 and Leu23 of VB22B db into a *Pvu*II site. The VB22B-VH reverse primer, sc-rL15, (primer B; SEQ ID NO: 174) was designed to hybridize to a DNA encoding the C terminus of VB22B-VH, and to have a nucleotide sequence encoding the (Gly4Ser)₃ linker, as well as a nucleotide sequence hybridizing to a DNA encoding the N terminus of VB22B-VL. The VB22B-VL forward primer, sc-fL15, (primer C; SEQ ID NO: 175) was designed to have a nucleotide sequence encoding the N terminus of VB22B-VL, a nucleotide sequence encoding the (Gly₄Ser)₃ linker, and a nucleotide sequence encoding the C terminus of VB22B-VH.

[0177]

In the first-round PCR, two PCR products: one comprising VB22B-VH and a linker sequence, and the other comprising VB22B-VL and the identical linker sequence, were synthesized by the procedure described below.

The composition of the PCR reaction solution (50 µL in total) is shown below.

10x PCR Buffer (TaKaRa)	5 μL
dNTPs (dATP, dGTP, dCTP, and dTTP) (TaKaRa)	0.4 mM
DNA polymerase TaKaRa Ex Taq (TaKaRa)	2.5 units
pCXND3-VB22B db	10 ng
Synthetic oligonucleotides, VB22B-fpvu, sc-rL15 or sc-fL15, and	10 pmol
33·115LR (primer D)	
[0178]	
The reaction conditions were:	
94°C (initial temperature) for 30 sec;	
five cycles of 94°C for 15 sec and 72°C for 2 min;	
five cycles of 94°C for 15 sec and 70°C for 2 min;	•
28 cycles of 94°C for 15 sec and 68°C for 2 min;	
and final extension was at 72°C for 5 min.	
[0179]	

After the PCR products of about 400 bp were purified from agarose gel using the

QIAquick Gel Extraction Kit (QIAGEN), the second-round PCR was carried out using aliquots
of the respective PCR products according to the protocol described below.

The composition of the PCR reaction solution (50 µL in total) is shown below.

10x PCR Buffer (TaKaRa)	5 μL
dNTPs (dATP, dGTP, dCTP, and dTTP) (TaKaRa)	0.4 mM
DNA polymerase TaKaRa Ex Taq (TaKaRa)	2.5 units
First-round PCR product (two types)	1 μL
Synthetic oligonucleotide, 70·115HF and 33·115LR	10 pmol
[0180]	

The reaction conditions were:

94°C (initial temperature) for 30 sec;

five cycles of 94°C for 15 sec and 72°C for 2 min;

five cycles of 94°C for 15 sec and 70°C for 2 min;

28 cycles of 94°C for 15 sec and 68°C for 2 min;

and final extension was at 72°C for 5 min.

20 [0181]

5

15

The PCR products of about 800 bp were purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN), and then digested with *Eco*RI and *Not*I (both from TaKaRa). The resulting DNA fragments were purified using the QIAquick PCR Purification Kit (QIAGEN), and then cloned into pBacPAK9 (Clontech) to construct pBacPAK9-scVB22B.

25 [0182]

A fragment to be inserted into the *Pvu*II site of pBacPAK9-scVB22B was prepared. Specifically, the fragment has a *Pvu*II recognition site at both ends and a nucleotide sequence, in which a gene encoding the VB22B-VH N-terminus is linked, *via* a (Gly₄Ser)₃ linker-encoding nucleotide sequence, to a gene encoding the amino acid sequence of an N-terminus-deleted VB22B-VH linked to VB22B-VL *via* the (Gly₄Ser)₃ linker. Two primers were newly designed to prepare the fragment by PCR. The forward primer for the fragment of interest, Fv2-f (primer E; SEQ ID NO: 176), was designed to have a *Pvu*II site at its 5' end and a VB22B-VH 5'-end sequence. The reverse primer for the fragment of interest, Fv2-r (primer F; SEQ ID NO: 177), was designed to hybridize to a DNA encoding the C terminus of VB22B-VL, and to have a *Pvu*II site, a nucleotide sequence encoding the (Gly₄Ser)₃ linker, and a nucleotide sequence hybridizing to a DNA encoding the N terminus of VB22B-VH. PCR was carried out using pBacPAK9-scVB22B as a template as described below.

[0183]

The composition of the PCR reaction solution (50 μ L in total) is shown below.

10x PCR Buffer (TaKaRa)	5 μL
dNTPs (dATP, dGTP, dCTP, and dTTP) (TaKaRa)	0.4 mM
DNA polymerase TaKaRa Ex Taq (TaKaRa)	2.5 units
pBacPAK9-scVB22B	10 μg
Synthetic oligonucleotide, Fv2-f and Fv2-r	10 pmol

15 [0184]

5

10

20

The reaction conditions were:

94°C (initial temperature) for 30 sec;

five cycles of 94°C for 15 sec and 72°C for 2 min;

five cycles of 94°C for 15 sec and 70°C for 2 min;

28 cycles of 94°C for 15 sec and 68°C for 2 min;

and final extension was at 72°C for 5 min.

[0185]

The PCR products of about 800 bp were purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN), and then cloned into the pGEM-T Easy Vector (Promega).

After sequencing, the plasmid was digested with *Pvu*II (TaKaRa), and the fragment of interest was recovered. The recovered fragment was ligated to pBacPAK9-scVB22B pre-digested with *Pvu*II (TaKaRa) to construct pBacPAK9-VB22B sc(Fv)₂. After the resulting vector was digested with *Eco*RI and *Not*I (both from TaKaRa), the fragment of about 1,600 bp was purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN). The fragment was then cloned into a pCXND3 expression vector to construct pCXND3-VB22B sc(Fv)₂.

[0186]

2.4 Expression of single-chain anti-human Mpl antibody in animal cells

A cell line stably expressing the single-chain antibody was prepared from CHO-DG44 cells as described below. Gene transfer was achieved by electroporation using a Gene Pulser II (Bio-Rad). An expression vector (25 μ g) and 0.75 mL of CHO-DG44 cells suspended in PBS (1 x 10⁷ cells/mL) were mixed. The resulting mixture was cooled on ice for 10 min, transferred into a cuvette, and pulsed at 1.5-kV and 25 μ FD. After a ten-minute restoration period at room temperature, the electroporated cells were plated in CHO-S-SFMII medium (Invitrogen) containing 500 μ g/mL Geneticin (Invitrogen). CHO cell lines expressing the single-chain antibody were established through selection. A cell line stably expressing VB22B sc(Fv)₂ and its culture supernatants were obtained by this method.

[0187]

5

10

15

20

25

30

35

The transient expression of the single-chain antibody was achieved using COS7 cells as described below. An expression vector (10 μ g) and 0.75 mL of COS7 cells suspended in PBS (1 x 10⁷ cells/mL) were mixed. The resulting mixture was cooled on ice for 10 min, transferred into a cuvette, and then pulsed at 1.5-kV and 25 μ FD. After a ten-minute restoration period at room temperature, the electroporated cells were plated in DMEM/10% FBS medium (Invitrogen). The cells were incubated overnight and then washed with PBS. CHO-S-SFMII medium was added and the cells were cultured for about three days. The culture supernatants for preparing the VB22B diabody were thus prepared.

[0188]

2.5 Quantitation of single-chain anti-human Mpl antibodies in culture supernatants

The culture supernatant concentration of the single-chain anti-human Mpl antibody transiently expressed in COS cells was determined using surface plasmon resonance. A sensor chip CM5 (Biacore) was placed in Biacore 2000 (Biacore). ANTI-FLAG® M2 Monoclonal Antibody (Sigma-Aldrich) was immobilized onto the chip. An appropriate concentration of sample was injected over the chip surface at a flow rate of 5 mL/sec, and 50 mM diethylamine was used to dissociate the bound antibody. Changes in the mass during sample injection were recorded, and the sample concentration was calculated from the calibration curve prepared using the mass changes of a standard sample. db12E10 (see WO 02/33073 and WO 02/33072) was used as the diabody standard, and 12E10 sc(Fv)₂ which has the same gene structure as that of sc(Fv)₂ was used as the sc(Fv)₂ standard.

[0189]

2.6 Purification of anti-human Mpl diabodies and single-chain antibodies

The culture supernatants of VB22B diabody-expressing COS7 cells or CHO cells was loaded onto an Anti-Flag M2 Affinity Gel (Sigma-Aldrich) column equilibrated with a 50 mM Tris-HCl buffer (pH7.4) containing 150 mM NaCl and 0.05% Tween20. The absorbed

antibodies were eluted with 100 mM glycine-HCl (pH3.5). The fractions eluted were immediately neutralized with 1 M Tris-HCl (pH8.0), and loaded onto a HiLoad 26/60 Superdex 200 pg (Amersham Biosciences) column for gel filtration chromatography. PBS/0.01% Tween20 was used in the gel filtration chromatography.

[0190]

5

10

15

20

25

30

35

VB22B sc(Fv)₂ was purified from the culture supernatants of VB22B sc(Fv)₂-expressing COS7 cells or CHO cells under the same conditions used for purifying the diabodies. A large-scale preparation of VB22B sc(Fv)2 was prepared by loading the CHO cell culture supernatants onto a Macro-Prep Ceramic Hydroxyapatite Type I (Bio-Rad) column equilibrated with a 20 mM phosphate buffer (pH6.8), and eluting the VB22B sc(Fv)₂ in a stepwise manner with 250 mM phosphate buffer (pH6.8). The eluted fraction was concentrated on an ultrafilter, and then fractionated by gel filtration chromatography using a HiLoad 26/60 Superdex 200 pg (Amersham Biosciences) column, and a fraction corresponding to the molecular weight range of about 40 kD to 70 kD was obtained. The fraction was loaded onto an Anti-Flag M2 Affinity Gel column equilibrated with a 50 mM Tris-HCl buffer (pH7.4) containing 150 mM NaCl and 0.05% Tween20. The absorbed antibody was eluted with 100 mM glycine-HCl (pH3.5). The eluted fraction was immediately neutralized with 1 M Tris-HCl (pH8.0), and loaded onto a HiLoad 26/60 Superdex 200 pg (Amersham Biosciences) column for gel filtration chromatography. 20 mM acetate buffer (pH6.0) containing 150 mM NaCl and 0.01% Tween80 was used in the gel filtration chromatography. In each purification step, the presence of the diabody and sc(Fv)₂ in the samples was confirmed by SDS-PAGE and Western blotting using an anti-Flag antibody (Sigma-Aldrich).

[0191]

2.7 Binding activity analyses of single-chain anti-human Mpl antibodies by flow cytometry CHO-human Mpl, CHO-monkey Mpl, and CHO-mouse Mpl cells were recovered and suspended in FACS buffer (1% FBS/PBS) to a final concentration of 1 x 10⁶ cells/mL. Cell suspensions were aliquoted at 100-μL/well into the Multiscreen-HV Filter Plates (Millipore). After centrifugation, the supernatant was removed. An appropriate concentration of diabody or sc(Fv)₂ was added into each well and incubated on ice for 30 min. The cells were washed once with 200 μL of FACS buffer, and incubated on ice for 30 min following the addition of 10 μg/mL ANTI-FLAG® M2 Monoclonal Antibody (Sigma-Aldrich). The cells were then washed once with 200 μL of FACS buffer, and a 100x-diluted FITC-labeled anti-mouse IgG antibody (Beckman Coulter) was added to the plate. The plate was incubated on ice for 30 min. After centrifugation, the supernatant was removed. The cells were suspended in 400 μL of FACS Buffer, and then analyzed by flow cytometry using EPICS ELITE ESP (Beckman Coulter). An analysis gate was set on the forward and side scatters of a histogram to include viable cell

populations.

5

10

15

20

25

30

35

[0192]

The binding activity of the purified VB22B sc(Fv)₂ to various Mpl molecules expressed in CHO cells was determined (Fig. 2). VB22B sc(Fv)₂ was found to specifically bind to CHO-human Mpl and CHO-monkey Mpl but not to the host cell CHO or CHO-mouse Mpl. This binding characteristic of VB22B sc(Fv)₂ is comparable to those of VB22B IgG, indicating that the antibody binding site remains unaltered by reduction of molecular weight.

[0193]

2.8 Analyses of TPO-like agonistic activity for single-chain anti-human Mpl antibodies

TPO-like agonistic activity was assessed using BaF3-human Mpls or BaF3-monkey

Mpls that proliferate in a TPO-dependent manner.

Cells from each cell line were washed twice with RPMI 1640/1% FBS (fetal bovine serum) (Invitrogen), and then suspended in RPMI 1640/10% FBS to a concentration of 4 x 10⁵ cells/mL. Cell suspensions were aliquoted at 60-μL/well into a 96-well plate. Various concentrations of rhTPO (R&D) and COS7 culture supernatants or purified samples were prepared, and a 40-μL aliquot was added into each well. The plates were then incubated at 37°C under 5% CO₂ for 24 hr. Immediately after a 10-μL aliquot of WST-8 reagent (Cell Count Reagent SF; Nacalai Tesque) was added into each well, absorbance was measured at 450 nm (and at 655 nm as a control) using Benchmark Plus. After two hours of incubation, absorbance was again measured at 450 nm (and at 655 nm as a control). The WST-8 reagent changes colors at 450 nm in a color reaction that reflects the viable cell count. The TPO-like agonistic activity was assessed using the change in absorbance during the two-hour incubation as an index. EC₅₀ values were computed using GraphPad Prism.

[0194]

TPO-like agonistic activity was assayed using the human leukemia cell line M-07e (purchased from DSMZ) which proliferates TPO-dependently. M-07e cells were washed twice with RPMI 1640/1% FBS, and then suspended in RPMI 1640/10% FBS to a concentration of 5 x 10⁵ cells/mL. The resulting cell suspension was aliquoted at 50-μL/well into a 96-well plate. Various concentrations of rhTPO and COS7 culture supernatants or purified samples were prepared, and a 50-μL aliquot was added into each well. The plates were then incubated at 37°C under 5% CO₂ for 48 hr. Immediately after a 10-μL aliquot of WST-8 reagent (Cell Count Reagent SF; Nacalai Tesque) was added to each well, absorbance of was measured at 450 nm (and at 655 nm as a control) using a Benchmark Plus. After four hours of incubation, absorbance was again measured at 450 nm (and at 655 nm as a control). The TPO-like agonistic activity was assayed using the change in absorbance during the four-hour incubation as an index.

[0195]

5

10

15

20

25

30

35

Purified VB22B IgG, VB22B diabody, and VB22B sc(Fv)2 were assayed for their TPO-like agonistic activities using BaF3-human Mpl, BaF3-monkey Mpl, and M-07e. The results are shown in Figures 3, 4, and 5, respectively. The presence of bivalent antigen-binding domains in a single antibody molecule is essential for its agonistic activity. The distance and angle between two antigen-binding domains can also be important factors (see WO 02/33073 and WO 02/33072). Similar results were obtained for the newly isolated anti-human Mpl antibodies. Specifically, the agonistic activities of VB22B diabody and VB22B sc(Fv)₂ (EC₅₀ = 61 pM and 27 pM in BaF-human Mpl, respectively) were higher than that of VB22B IgG (EC₅₀ > 30 nM in BaF-human Mpl), and were equivalent to or higher than that of the naturally-occurring human TPO ligand (EC₅₀ = 76 pM in BaF-human Mpl). The VB22B diabody activity was lower than that of VB22B sc(Fv)₂. This suggests that the structure of a single-chain antibody is greatly altered by its molecular shape and the length of the linker sequence, which in turn changes the agonistic activity. Sixteen types of the single-chain anti-human Mpl antibodies were obtained, each exhibiting a high agonistic activity. The amino acid sequences of the H chain and L chain variable regions of the representative antibodies are shown in Figures 6 and 7, respectively.

[0196]

2.9 Humanization of single-chain anti-human Mpl antibody

Antibody sequence data for the humanization of VB22B sc(Fv)₂ were obtained from the Kabat Database (ftp://ftp.ebi.ac.uk/pub/databases/kabat/), and homology searches were carried out independently for the H chain variable region and the L chain variable region. As a result, the H chain variable region was found to be highly homologous to DN13 (Smithson S. L. *et al.*, Mol Immunol. (1999) 36: 113-124). The L chain variable region was found to be highly homologous to ToP027 (Hougs L. *et al.*, J. Immunol. (1999) 162: 224-237). Humanized antibodies were prepared by inserting a complementarity-determining region (hereinafter abbreviated as "CDR") into the framework regions (hereinafter abbreviated as "FR") of the above antibodies. The humanized antibody sc(Fv)₂ was expressed in CHO-DG44 cells, and its agonistic activity was assessed using BaF-human Mpl. The agonistic activity was used as an index to generate a humanized VB22B sc(Fv)₂ which has agonistic activity equivalent to that of murine VB22B sc(Fv)₂ by replacing one or more amino acids in its framework region.

[0197]

Specifically, synthetic oligo-DNAs of approximately 50 nucleotides in length were designed as to make 20 of these nucleotides available for hybridization, and the synthetic oligo-DNAs were assembled by PCR to prepare genes that encode the respective variable regions. Using the resulting genes, sc(Fv)₂ was similarly prepared by the method described in

Example 2.3. The respective DNAs were cloned into a pCXND3expression vector to construct three kinds of expression vectors, pCXND3-hVB22B p-z sc(Fv)2, pCXND3-hVB22B g-e sc(Fv)2, and pCXND3-hVB22B e sc(Fv)₂, to which the humanized VB22B sc(Fv)₂ is inserted. The nucleotide sequence and the amino acid sequence of hVB22B p-z sc(Fv)₂ in the plasmid are shown in SEQ ID NOs: 1 and 2. The nucleotide sequence and the amino acid sequence of hVB22B g-e sc(Fv)₂ are shown in SEQ ID NOs: 253 and 254. The nucleotide sequence and the amino acid sequence of hVB22B e sc(Fv)₂ are shown in SEQ ID NOs: 259 and 260. The nucleotide sequence and the amino acid sequence of murine VB22B sc(Fv)2 are shown in SEQ ID NOs: 263 and 264. The plasmids were expressed in CHO-DG44 cells by the method described in Example 2.4 and the purification was done using the method described in Example The TPO-like agonistic activities of the purified samples were similarly determined using the method described in Example 2.8. The TPO-like agonistic activities of the purified murine VB22B sc(Fv)₂, and humanized hVB22B e sc(Fv)₂ and hVB22B g-e sc(Fv)₂ in BaF3-human Mpl were assessed. The results are shown in Figures 19. The humanized VB22B sc(Fv)₂. showed comparable agonistic activities, suggesting that the humanization has no influence on the activity.

[0198]

5

10

15

20

25

[Example 3] Preparation of anti-Mpl diabodies by the AGS method

Anti-Mpl diabodies having agonistic activity were prepared by an Autocrine Growth Selection (AGS) method (see, WO 03/91424).

[0199]

3.1 Construction of a retrovirus library

Spleens were isolated from MRL/lpr mice immunized with shMPL-Flag by the method described in Example 1.5, and homogenized in TRIZOL Reagent (Invitrogen) using a Dounce homogenizer. After chloroform addition, the homogenized sample was shaken vigorously, the aqueous phase was removed and total RNA was extracted by isopropanol precipitation. mRNA was purified using a PolyATract System 1000 (Promega). Reverse transcription of 2.5 µg mRNA was carried out at 42°C for 50 min using the Superscript First strand synthesis system for RT-PCR (Invitrogen) and the included oligo-dT primers to prepare cDNA.

30 [0200]

The composition of the PCR reaction solution (250 μ L) is shown below.

10x KOD Plus Buffer (Toyobo)	25 μL	
2 mM dNTPs (dATP, dGTP, dCTP, and dTTP) (Toyobo)	25 μL	
2.5 mM MgSO ₄ (Toyobo)	10 μL	
KOD Plus (Toyobo)	7.5 μL	
Reverse transcription products	25 μL	

Mixed primers complementary to H chain or L chain variable region 500 pmol [0201]

The reaction conditions were:

98°C (initial temperature) for 3 min;

32 cycles of 98°C for 20 sec, 58°C for 20 sec, and 72°C for 30 sec;

and final extension was at 72°C for 6 min.

[0202]

The H chain primer mix contained HS1 to HS19 (SEQ ID NOs: 178 to 196) and HA1 to HA4 (SEQ ID NOs: 197 to 200), which were mixed at the indicated ratios next to the sequence names in Table 1. The L chain primer mix contained LS1 to LS17 (SEQ ID NOs: 201 to 217), LSlambda (SEQ ID NO: 218), LA1 to LA5 (SEQ ID NOs: 219 to 222), and LAlambda (SEQ ID NO: 223). The respective PCR products were purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN). The H chain and L chain variable regions were linked *via* the (Gly₄Ser)₁ linker sequence by PCR using sc-S (SEQ ID NO: 224) and sc-AS (SEQ ID NO: 225) as described below.

15 [0203]

5

10

20

The composition of the PCR reaction solution (100 μ L in total) is shown below.

10x KOD Plus Buffer (Toyobo)	10 μL
2 mM dNTPs (dATP, dGTP, dCTP, and dTTP) (Toyobo)	10 μL
2.5 mM MgSO ₄ (Toyobo)	4 μL
KOD Plus (Toyobo)	2 μL
Fragment of H chain variable region	4 μL
Fragment of L chain variable region	4 μL
[0204]	

[0204]

The first-round PCR conditions were:

94°C (initial temperature) for 3 min; and

seven cycles of 94°C for 1 min and 63°C for 4 min.

Then, sc-S and sc-AS (25 pmol each) were added to the first-round products.

The second-round PCR conditions were:

30 cycles of 94°C for 30 sec, 55°C for 2 min, and 72°C for 2 min;

and final extension was at 72°C for 6 min.

25 [0205]

The resulting product with an *Sfi*I restriction site at both ends was purified using the QIAquick PCR Purification Kit (QIAGEN), and incubated with the *Sfi*I restriction enzyme (TaKaRa) overnight at 50°C. The PCR product purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN) was inserted into the *Sfi*I site of the viral vector

pMX/IL3ssGFPHis.

5

10

[0206]

The resulting plasmid was constructed by inserting a GFP gene, which has an EcoRI site, mouse IL-3 signal sequence and SfiI site at its 5' end; and an SfiI site, His tag sequence, termination codon, and NotI site at its 3' end, between the EcoRI and NotI sites on the pMX viral vector (Onishi, M. et al., Mol. Cell. Biol. 18: 3871-3879). The plasmid was introduced into the ElectroMAX DH10B T1 phage resistant cells (Invitrogen) by electroporation (settings: 2.5 kV, 25 μ F, and 100 Ω) using a Gene Pulser II (Bio-Rad). The cells were plated onto an LB-Agar plate containing 100 μ g/mL ampicillin. After overnight incubation, 1 x 10⁷ colonies were obtained. Colonies were recovered from the plate and plasmids were then extracted using the QIAGEN Plasmid Maxi Kit (QIAGEN).

[0207]

[Table 1]

```
SEQ ID NO: 178 (HS1(4)) GCCCAGCCGGCCATGGCGGAKGTRMAGCTTCAGGAGTC
SEQ ID NO:179 (HS2(4)) GCCCAGCCGGCCATGGCGGAGGTBCAGCTBCAGCAGTC
SEQ ID NO: 180 (HS3(3)) GCCCAGCCGGCCATGGCGCAGGTGCAGCTGAAGSASTC
SEQ ID NO:181 (HS4(4)) GCCCAGCCGGCCATGGCGAGGTCCARCTGCAACARTC
SEQ ID NO: 182 (HS5(7)) GCCCAGCCGGCCATGGCGCAGGTYCAGCTBCAGCARTC
SEQ ID NO:183 (HS6(2)) GCCCAGCCGGCCATGGCGCAGGTYCARCTGCAGCAGTC
SEQ ID NO: 184 (HS7(1)) GCCCAGCCGGCCATGGCGCAGGTCCACGTGAAGCAGTC
SEQ ID NO:185 (HS8(2)) GCCCAGCCGGCCATGGCGGAGGTGAASSTGGTGGAATC
SEQ ID NO: 186 (HS9(5)) GCCCAGCCGGCCATGGCGGAVGTGAWGYTGGTGGAGTC
SEQ ID NO:187 (HS10(2)) GCCCAGCCGGCCATGGCGGAGGTGCAGSKGGTGGAGTC
SEQ ID NO: 188 (HS11(2)) GCCCAGCCGGCCATGGCGGAKGTGCAMCTGGTGGAGTC
SEQ ID NO: 189 (HS12(2)) GCCCAGCCGGCCATGGCGGAGGTGAAGCTGATGGARTC
SEQ ID NO: 190 (HS13(1)) GCCCAGCCGGCCATGGCGGAGGTGCARCTTGTTGAGTC
SEQ ID NO:191 (HS14(2)) GCCCAGCCGGCCATGGCGGARGTRAAGCTTCTCGAGTC
SEQ ID NO: 192 (HS15(2)) GCCCAGCCGGCCATGGCGGAAGTGAARSTTGAGGAGTC
SEQ ID NO: 193 (HS16(5)) GCCCAGCCGGCCATGGCGCAGGTTACTCTRAAAGWGTSTG
SEQ ID NO: 194 (HS17 (3.5)) GCCCAGCCGGCCATGGCGCAGGTCCAACTVCAGCARCC
SEQ ID NO:195 (HS18(0.7)) GCCCAGCCGGCCATGGCGGATGTGAACTTGGAAGTGTC
SEQ ID NO: 196 (HS19(0.7)) GCCCAGCCGGCCATGGCGGAGGTGAAGGTCATCGAGTC
SEQ ID NO:197 (HA1(1)) GGAGCCGCCGCCCCGAGGAAACGGTGACCGTGGT
SEQ ID NO: 198 (HA2(1)) GGAGCCGCCGCCCCGAGGAGACTGTGAGAGTGGT
SEQ ID NO: 199 (HA3(1)) GGAGCCGCCGCCGCCGCAGAGACAGTGACCAGAGT
SEQ ID NO: 200 (HA4(1)) GGAGCCGCCGCCCCGAGGAGACGGTGACTGAGGT
SEQ ID NO: 201 (LS1(1)) GGCGGCGGCGCTCCGAYATCCAGCTGACTCAGCC
SEQ ID NO: 202 (LS2(2)) GGCGGCGGCGCTCCGAYATTGTTCTCWCCCAGTC
SEQ ID NO: 203 (LS3 (5)) GGCGGCGGCGCTCCGAYATTGTGMTMACTCAGTC
SEQ ID NO: 204 (LS4 (3.5)) GGCGGCGGCGCTCCGAYATTGTGYTRACACAGTC
SEQ ID NO: 205 (LS5(4)) GGCGGCGGCGCTCCGAYATTGTRATGACMCAGTC
SEQ ID NO: 206 (LS6(7)) GGCGGCGGCGCTCCGAYATTMAGATRAMCCAGTC
SEQ ID NO: 207 (LS7(6)) GGCGGCGGCGGCTCCGAYATTCAGATGAYDCAGTC
SEQ ID NO: 208 (LS8 (1.5)) GGCGGCGGCGCTCCGAYATYCAGATGACACAGAC
SEQ ID NO: 209 (LS9(2)) GGCGGCGGCGCTCCGAYATTGTTCTCAWCCAGTC
SEQ ID NO:210 (LS10(3.5)) GGCGGCGGCGCTCCGAYATTGWGCTSACCCAATC
SEQ ID NO:211 (LS11(8)) GGCGGCGGCGCTCCGAYATTSTRATGACCCARTC
SEQ ID NO:212 (LS12(8)) GGCGGCGGCGCTCCGAYRTTKTGATGACCCARAC
SEQ ID NO:213 (LS13(6)) GGCGGCGGCGCTCCGAYATTGTGATGACBCAGKC
SEQ ID NO:214 (LS14(2)) GGCGGCGGCGCTCCGAYATTGTGATAACYCAGGA
SEQ ID NO:215 (LS15(2)) GGCGGCGGCGCTCCGAYATTGTGATGACCCAGWT
SEQ ID NO:216 (LS16(1)) GGCGGCGGCGCTCCGAYATTGTGATGACACACC
SEQ ID NO:217 (LS17(1)) GGCGGCGGCGCTCCGAYATTTTGCTGACTCAGTC
SEQ ID NO:218 (LS1ambda(1)) GGCGGCGGCGCTCCGATGCTGTTGTGACTCAGGAATC
SEQ ID NO:219 (LA1(4)) GGAATTCGGCCCCCGAGGCCTTGATTTCCAGCTTGG
SEQ ID NO: 220 (LA2(4)) GGAATTCGGCCCCGAGGCCTTTATTTCCAGCTTGG
SEQ ID NO: 221 (LA4(4)) GGAATTCGGCCCCGAGGCCTTTATTTCCAACTTTG
SEQ ID NO: 222 (LA5(4)) GGAATTCGGCCCCCGAGGCCTTCAGCTCCAGCTTGG
SEQ ID NO: 223 (LAlambda (1)) GGAATTCGGCCCCGAGGCCCCTAGGACAGTCAGTTTGG
```

[0208]

5

10

15

20

25

30

3.2 Establishment of autonomously replicating cell lines by the AGS method

The resulting library was transfected into a packaging cell, Pt-E, (Morita, S. et al., Gene therapy 7: 1063-1066) using FuGENE 6 (Roche Diagnostics). Specifically, Pt-E was plated onto 6-cm dishes and cultured in DMEM/10% FBS (Invitrogen). A mixture of FuGENE 6 and the library was added to the plate the following day. The culture medium was exchanged the next day, and the culture supernatant was collected 24 hours after that. 10 µg/mL polybrene (Hexadimethrine Bromide; Sigma) and 2 ng/mL mIL-3 were added to the culture supernatant containing recombinant virus particles. The viral solution was used to infect the BaF-monkey Mpl target cells. The cells were washed with PBS the following day, and suspended in RPMI 1640/10% FBS without mIL-3. The suspension was plated onto a 96-well plate at a cell density of 1,000 cells/well. Autonomously replicating cell lines (AB317 and AB324) were obtained after seven days of incubation. Genomic DNAs were extracted from these cells using a DNeasy Tissue Kit (QIAGEN), and the antibody genes were amplified by PCR.

[0209]

The composition of the PCR reaction solution (50 µL in total) is shown below.

10x LA Taq Buffer (TaKaRa)	5 μL
2 mM dNTPs (dATP, dGTP, dCTP, and dTTP) (TaKaRa)	5 μL
2.5 mM MgCl ₄ (TaKaRa)	5 μL
TaKaRa LA Taq (TaKaRa)	0.5 μL
Genomic DNA	0.5 μg
AGSdbS1 (SEQ ID NO: 226) and AGSdbA1 (SEQ ID NO: 227)	25 pmol

[0210]

The reaction conditions were:

94°C (initial temperature) for 1 min;

30 cycles of 94°C for 30 sec, 60°C for 30 sec, and 70°C for 1 min;

and final extension was at 72°C for 6 min.

[0211]

The nucleotide sequence and the amino acid sequence of the H chain of cloned AB317 are shown in SEQ ID NOs: 154 and 155. The nucleotide sequence and the amino acid sequence of AB317 L chain are shown in SEQ ID NOs: 156 and 157. The nucleotide sequence and the amino acid sequence of AB324 H chain are shown in SEQ ID NOs: 158 and 159. The nucleotide sequence and the amino acid sequence of AB324 L chain are shown in SEQ ID NOs: 160 and 161.

[0212]

3.3 Activity assays of the diabodies obtained by AGS method

Each of the anti-Mpl diabodies obtained above was inserted into the pCXND3 expression vector. The PCR primers used are a synthetic oligonucleotide complementary to the 5' end of the diabody and containing an *Eco*RI site, and a synthetic oligonucleotide complementary to the nucleotide sequence of the 3' end of the diabody and containing a FLAG tag and a *Not*I site. The PCR product thus obtained was inserted into pCXND3 between the *Eco*RI and *Not*I sites. The diabody was expressed transiently in COS7 cells by the method described in Example 2.4. The culture supernatant was removed and the activity of the diabody was evaluated.

[0213]

5

10

15

20

25

30

35

The binding activities of the diabodies were assessed by flow cytometry using CHO cells that express Mpl derived from various species (Fig. 8). AB317 was proven to bind to CHO-mouse Mpl.

[0214]

The TPO-like agonistic activities of the diabodies were evaluated using BaF-human Mpl, BaF-monkey Mpl, and BaF-mouse Mpl (Figures 9, 10, and 11). AB317 had the highest agonistic activity against human, monkey, and mouse Mpl, whereas AB324 showed the highest agonistic activity against human and monkey Mpl.

[0215]

This proves that anti-Mpl diabodies having high agonistic activity can be obtained by the AGS method.

[0216]

[Example 4] Agonistic activity assays of the anti-Mpl antibodies against mutant Mpl in congenital amegakaryocytic thrombocytopenia (CAMT) patients

4.1 Establishment of BaF3 cell lines introduced with the mutant Mpl observed in CAMT patients Mutations on G305C (R102P), C769T (R257C), and C823A (P275T) have been reported in the Mpl gene of CAMT patients. The respective expression vectors carrying the Mpl gene mutations were constructed and introduced into BaF3 cells. The following Mpl gene fragments were constructed: normal Mpl gene (nucleotide sequence, SEQ ID NO: 246; amino acid sequence, SEQ ID NO: 123); gene G305C in which C is substituted for 305th nucleotide G relative to the initiation codon (nucleotide sequence, SEQ ID NO: 247; amino acid sequence, SEQ ID NO: 248); gene C769T in which T is substituted for 769th nucleotide C (nucleotide sequence, SEQ ID NO: 249; amino acid sequence, SEQ ID NO: 250); and gene C823A in which A is substituted for 823rd nucleotide C (nucleotide sequence, SEQ ID NO: 251; amino acid sequence, SEQ ID NO: 252). These DNA fragments were digested with *Eco*RI and *SaI*I, and inserted between the *Eco*RI and *SaI*I sites on the animal cell expression vector pCOS2-Ha to prepare pCOS2-hMPLfullG305C, pCOS2-hMPLfullC769T, and pCOS2-hMPLfullC823A.

[0217]

The genes were introduced into BaF3 cells by the procedure described in Example 1.1.1 to establish BaF3 cell lines expressing each Mpl gene: BaF3-human MPL (G305C), BaF3-human MPL (C769T), and BaF3-human MPL (C823A). After the selection, the cells were cultured and passaged using RPMI 1640 containing 1 ng/mL mIL-3 and 10% FBS.

[0218]

5

10

15

20

25

30

35

4.2 Preparation of anti-human Mpl diabody and sc(Fv)₂

Among the amino acid sequences shown in Figures 6 and 7, expression vectors were prepared for the diabodies VB8B, VB45B, VB33, VB140, VB157, and TA136 using the same procedure described in Example 2.2.2. The prepared expression vectors were introduced into COS7 cells by the same procedure described in Example 2.2.4. The supernatant concentration of each diabody was determined by the method of Example 2.2.5. The sc(Fv)₂ expression vector for TA136 was prepared by the same procedure described in Example 2.2.3. The vector was introduced into CHO-DG44 cells by the same procedure described in Example 2.2.4. sc(Fv)₂ was purified from the culture supernatant thus obtained using the same method described in Example 2.2.6.

[0219]

4.3 Agonistic activity assays of sc(Fv)₂ and the anti-human Mpl diabodies

The prepared diabodies and sc(Fv)₂ were assayed for their agonistic activities in normal Mpl and mutant Mpl in BaF3 cells by the same procedure described in Example 2.2.8. The agonistic activities in BaF3-human Mpl and BaF3-human Mpl (G305C) were compared using the culture supernatants of cells expressing the diabodies. The TA136 diabody (TA136 db) was shown to have a low agonistic activity in BaF3-human Mpl cells expressing the normal Mpl gene, and a high agonistic activity in BaF3-human Mpl (G305C) cells expressing the mutant Mpl gene. hTPO and the rest of the diabodies did not show a high agonistic activity in BaF3-human Mpl (G305C) cells (Figures 12 and 13).

[0220]

In addition, the agonistic activities of the TA136 diabody and TA136 sc(Fv)₂ in BaF3-human Mpl, BaF3-human Mpl (G305C), BaF3-human Mpl (C769T), and BaF3-human Mpl (C823A) cells were assessed using a purified sample of the diabody. Compared with hTPO and the TA136 diabody, TA136 sc(Fv)₂ exhibited a higher agonistic activity in all three types of the TPO receptor mutant cell lines (Figures 15, 16 and 17). Furthermore, it was shown that in BaF3-human Mpl cells expressing the normal Mpl gene, the TA136 diabody exhibited a lower activity than hTPO. However, an agonistic activity equivalent to that of hTPO was achieved by converting the diabody into sc(Fv)₂ (Fig. 14).

[Brief Description of the Drawings]

[0221]

5

15

20

25

30

- [Fig. 1] Fig. 1 demonstrates the strategy for preparing single-chain antibody sc(Fv)₂.
- [Fig. 2] Fig. 2 illustrates the assessment of VB22B sc(Fv)₂ binding activity using an Mpl-expressing CHO cell line. Purified VB22B sc(Fv)₂ was used.
- [Fig. 3] Fig. 3 illustrates the assessment of VB22B antibody agonistic activity using BaF-human Mpl.
- [Fig. 4] Fig. 4 illustrates the assessment of VB22B antibody agonistic activity using BaF-monkey Mpl.
- 10 [Fig. 5] Fig. 5 illustrates the assessment of VB22B antibody agonistic activity using M-07e.
 - [Fig. 6] Fig. 6 shows the amino acid sequences of anti-human Mpl antibodies (H chains) that exhibit higher agonistic activities when converted into minibodies.
 - [Fig. 7] Fig. 7 shows the amino acid sequences of anti-human Mpl antibodies (L chains) which exhibit higher agonistic activities when converted into minibodies.
 - [Fig. 8] Fig. 8 illustrates the binding activity assessment of AB317 diabody using Mpl-expressing CHO cells. Both VB22B diabody (solid line) and AB317 diabody (broken line) were obtained from COS7 culture supernatants.
 - [Fig. 9] Fig. 9 illustrates the agnostic activity assessment of AB324 and AB317 diabodies using BaF-human Mpl.
 - [Fig. 10] Fig. 10 illustrates the agnostic activity assessment of AB324 and AB317 diabodies using BaF-monkey Mpl.
 - [Fig. 11] Fig. 11 illustrates the agnostic activity assessment of AB324 and AB317 diabodies using BaF-mouse Mpl.
 - [Fig. 12] Fig. 12 shows the agonistic activities of diabodies and hTPO in BaF3-human Mpl cells. The Y-axis shows OD at 450/655 nm, and the X-axis represents concentration.
 - [Fig.13] Fig. 13 shows the agonistic activities of diabodies and hTPO in BaF3-human Mpl (G305C) cells. The Y-axis shows OD at 450/655 nm, and the X-axis represents concentration.
 - [Fig. 14] Fig. 14 shows the agonistic activities of TA136 db and TA136 sc(Fv)₂ in BaF3-human Mpl cells. The Y-axis shows OD at 450/655 nm and the X-axis represents concentration.
 - [Fig. 15] Fig. 15 shows the agonistic activities of TA136 db and TA136 sc(Fv)₂ in BaF3-human Mpl (G305C) cells. The Y-axis shows OD at 450/655 nm, and the X-axis represents concentration.
 - [Fig. 16] Fig. 16 shows the agonistic activities of TA136 db and TA136 sc(Fv)₂ in

BaF3-human Mpl (C769T) cells. The Y-axis shows OD at 450/655 nm, and the X-axis represents concentration.

[Fig. 17] Fig. 17 shows the agonistic activities of TA136 db and TA136 $sc(Fv)_2$ in BaF3-human Mpl (C823A) cells. The Y-axis shows OD at 450/655 nm, and the X-axis represents concentration.

5

10

[Fig. 18] Fig. 18 shows the positions of FRs and CDRs in humanized heavy chain sequences (hVB22B p-z: VH), and humanized light chain sequences (hVB22B p-z: VL).

[Fig. 19] Fig. 19 shows the TPO-like agonistic activities of murine VB22B sc(Fv)₂, hVB22B e sc(Fv)₂, and hVB22B g-e sc(Fv)₂ in BaF3-human Mpl. The Y-axis shows absorbance ratio (450nm/655nm), and the X-axis represents concentration.

[Sequence Listing]

SEQUENCE LISTING

5	<110>	CHUGAI SEIYAKU K	ABUSHIKI K	(A I SHA			
	<120>	anti-Mpl antibod	у				
	<130>	C1-A0320Y1					
10		JP 2003-415746 2003-12-12					
	<160>	285					
15	<170>	Patentin version	3. 1				
20	<211> <212>	1 1572 DNA Homo sapiens					
		1 tgga cotggaggtt c	ctctttgtg	gtggcagcag	ctacaggtgt	ccagtcccag	60
25		ctgg tgcagtctgg a					120
	tgcaag	gott otggatacac o	ttcaccaac	toctggatga	actgggtgag	gcagaggcct	180
30	ggaaag	ggtc ttgagtggat g	ggacggatt	tatcctggag	atggagaaac	tatctacaat	240
	gggaaa	ttca gggtcagagt ca	acgattacc	gcggacgaat	ccacgagcac	agcctacatg	300
25	gagotga	agca gcctgagatc t	gaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	360
35	gattac	cet ttecttacte e	00CC20002	accacggtca	cogtatatta	apptpptppt	420

	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctgca	480
5	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
3	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	600
	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
10	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
15	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
20	ggaaagggtc	ttgagtggat	gggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
25	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctgca	1260
30	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	1380
35	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500

ctggaaatca aa <210> 2 <211> 524 <212> PRT <213> Homo sapiens <400> 2 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Giu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Ser Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Met Gly Arg Ile Tyr Pro Gly Asp Gly Glu Thr Ile Tyr Asn Gly Lys Phe Arg Val Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly

ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa

	Gln	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
5	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va I 155	Met	Thr	Gln	Ser	Ala 160
	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
10	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
15	Phe	Gln	GIn 195	Lys	Pro	Gly	GIn	Ser 200	Pro	Gln	Leu	Leu	lle 205	Tyr	Arg	Met
13	Ser	Asn 210	Leu	Ala	Ser	Gly	Val 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
20	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	lle	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
25	Gln	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
30	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
50	Glu	Va I 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
35	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Gln	Arg	Pro 320

Gly	Lys	Gly	Leu	Glu	Trp	Met	Gly	Arg	He	Tyr	Pro	Gly	Asp	Gly	Glu
				325					330					335	

- Thr Ile Tyr Asn Gly Lys Phe Arg Val Arg Val Thr Ile Thr Ala Asp 340 345 350
 - Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu 355 360 365
- 10 Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe 370 375 380
 - Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly 385 390 395 400

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp lle Val Met
405 410 415

15

30

35

Thr Gin Ser Ala Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser 20 420 425 430

- Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr 435 440 445
- Tyr Leu Tyr Trp Phe Gin Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu 450 455 460
 - Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser 465 470 475 480

Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys IIe Ser Arg Val Glu 485 490 495

Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His lle Glu Tyr Pro 500 505 510

```
Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
515 520
```

5 <210> 3

<211> 5

<212> PRT

<213> Mus musculus

10 <400> 3

Ser Ser Trp Met Asn

1 5

15 <210> 4

<211> 17

<212> PRT

<213> Mus musculus

20 <400> 4

Arg Thr Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys

1

5

10

15

Gly

25

<210> 5

<211> 13

30 <212> PRT

<213> Mus musculus

<400> 5

Gly Trp lie Leu Ala Asp Gly Gly Tyr Ser Phe Ala Tyr

35 1 5 10

```
<210> 6
     <211> 5
     <212> PRT
     <213> Mus musculus
     <400> 6
     Ser Ser Trp Met Asn
                     5
10
     <210> 7
     <211> 17
     <212> PRT
15
     <213> Mus musculus
     <400> 7
     Arg Ile Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys
     1
                     5
                                        10
20
     Gly
25
     <210> 8
     <211> 9
     <212> PRT
     <213> Mus musculus
30
     <400> 8
     Gly Tyr Ala Asp Tyr Ser Phe Ala Tyr
     1
                     5
35
     <210> 9
```

<211> 5

```
<212> PRT
     <213> Mus musculus
     <400> 9
 5 Ser Ser Trp Met Asn
     1
                    5
     <210> 10
10
     <211> 17
     <212> PRT
     <213> Mus musculus
     <400> 10
     Arg lie Tyr Pro Gly Asp Gly Glu Thr Asn Tyr Asn Gly Lys Phe Lys
15
     1
                     5
                                        10
                                                            15
     Gly
20
     <210> 11
     <211> 9
     <212> PRT
25
     <213> Mus musculus
     <400>_ 11
     Gly Phe Gly Asp Tyr Ser Phe Ala Tyr
                    5
     1
30
     <210> 12
     <211> 5
     <212> PRT
35
     <213> Mus musculus
```

```
<400> 12
     Ser Ser Trp Met Asn
     1 5
 5
     <210> 13
     <211> 17
     <212> PRT
     <213> Mus musculus
10
     <400> 13
     Arg lie Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys
     1
                    5
                                       10
                                                         15
15
     Gly
     <210> 14
     <211> 9
20
     <212> PRT
     <213> Mus musculus
     <400> 14
     Gly Tyr Ala Asp Tyr Ser Phe Ala Tyr
25
     1
                   5
     <210> 15
     <211> 5
30
     <212> PRT
     <213> Mus musculus
     <400> 15
    Arg Ser Trp Met Asn
35
     1
                   5
```

```
<210> 16
     <211> 17
     <212> PRT
 5
     <213> Mus musculus
     <400> 16
     Arg lie Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys
10
                    5
                                        10
                                                            15
     Gly
15
     <210> 17
     <211> 9
     <212> PRT
     <213> Mus musculus
20
     <400> 17
     Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr
     1
                    5
25
     <210> 18
     <211> 5
     <212> PRT
     <213> Mus musculus
30
     <400> 18
     Asn Ser Trp Met Asn
                    5
35
```

<210> 19

10

```
<211> 17
     <212> PRT
     <213> Mus musculus
 5 <400> 19
     Arg lie Tyr Pro Gly Asp Gly Glu Thr Asn Asn Asn Gly Lys Phe Lys
     1
                    5
     Gly
10
     <210> 20
     <211> 9
15
    <212> PRT
     <213> Mus musculus
     <400> 20
     Gly Tyr Gly Asp Tyr Ser Phe Ala Tyr
20
     1
                  5
     <210> 21
     ⟨211⟩ 5
25
     <212> PRT
     <213> Mus musculus
     <400> 21
     Asn Tyr Trp Val Asn
30
                    5
     <210> 22
```

<211> 17 <212> PRT

<213> Mus musculus

```
<400> 22
```

Arg Ile His Pro Ser Asp Ser Glu Thr His Cys Asn Gln Lys Phe Lys

1

5

10

15

5

Arg

10 <210> 23

<211> 6

<212> PRT

<213> Mus musculus

15 <400> 23

Gly Gly Trp Phe Ala Tyr

1

5

20 <210> 24

<211> 5

<212> PRT

<213> Mus musculus

25 <400> 24

Ser Ser Trp Met Asn

1

5

30 <210> 25

<211> 17

<212> PRT

<213> Mus musculus

35 <400> 25

Arg IIe Tyr Pro Gly Asp Gly Glu Thr Asn Asn Asn Gly Lys Phe Lys

```
5
                                                            15
     1
                                        10
     Gly
 5
     <210> 26
     ⟨211⟩ 9
     <212> PRT
10
     <213> Mus musculus
     <400> 26
     Gly Tyr Gly Asp Tyr Ser Phe Ala Tyr
     1
                     5
15
     <210> 27
     <211> 5
     <212> PRT
20
     <213> Mus musculus
     <400> 27
     Thr Ser Trp Met Asn
     1
                     5
25
     <210> 28
     <211> 17
     <212> PRT
30
     <213> Mus musculus
     <400> 28
     Arg lle Tyr Pro Gly Asp Gly Glu Ala Asn Tyr Asn Gly Lys Phe Lys
                     5
     1
                                        10
                                                            15
35
     Gly
```

```
<211> 9
     <212> PRT
     <213> Mus musculus
     <400> 29
10 Gly Tyr Gly Asp Tyr Ser Phe Ala Tyr
     1
     <210> 30
     <211> 5
15
     <212> PRT
     <213> Mus musculus
     <400> 30
20
     Ser Ser Trp Met Asn
     <210> 31
25
     <211> 17
     <212> PRT
     <213> Mus musculus
     <400> 31
30
    Arg Ile Tyr Pro Gly Asp Gly Glu Thr Asn Tyr Asn Gly Lys Phe Lys
     1
                    5
                                       10
                                                          15
     Gly
```

<210> 29

```
<210> 32
     <211> 9
     <212> PRT
     <213> Mus musculus
 5
     <400> 32
     Gly Tyr Gly Asp Tyr Ser Phe Ala Tyr
                    5
10
     <210> 33
     <211> 5
     <212> PRT
     <213> Mus musculus
15
     <400> 33
     Arg Ser Trp Met Asn
                    5
20
     <210> 34
     <211> 17
     <212> PRT
     <213> Mus musculus
25
     <400> 34
     Arg Ile Tyr Pro Gly Asp Gly Glu Thr Asn Tyr Asn Gly Lys Phe Lys
     1
                    5
                                        10
                                                            15
30
     Gly
     <210> 35
     <211> 9
35
     <212> PRT
```

```
<213> Mus musculus
     <400> 35
     Gly Asp Gly Asp Tyr Ser Phe Ala Tyr
 5
                     5
     1
     <210> 36
     <211> 5
10
     <212> PRT
     <213> Mus musculus
     <400> 36
     Asn Ser Trp Met Asn
15
                     5
     <210> 37
     <211> 17
     <212> PRT
20
     <213> Mus musculus
     <400> 37
     Arg lie Tyr Pro Gly Asp Gly Glu Thr lie Tyr Asn Gly Lys Phe Arg
25
     1
                     5
                                         10
                                                            15
     Val
30
     <210> 38
     <211> 9
     <212> PRT
     <213> Mus musculus
35
```

<400> 38

```
Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr
     <210> 39
 5
     <211> 5
     <212> PRT
     <213> Mus musculus
10 <400> 39
     Asp Tyr Trp Val Asn
                  -5
     1
     <210> 40
15
     <211> 17
     <212> PRT
     <213> Mus musculus
20
     <400> 40
     Arg Ile His Pro Tyr Asp Ser Glu Thr His Tyr Asn Gln Lys Phe Lys
                    5
                                                           15
     Asn
25
     <210> 41
     <211> 6
30
     <212> PRT
     <213> Mus musculus
     <400> 41
     Gly Gly Trp Phe Ala Ser
```

```
<210> 42
     <211> 5
     <212> PRT
     <213> Mus musculus
     <400> 42
     Asp Tyr Trp Met Asn
                    5
10
     <210> 43
     <211> 17
     <212> PRT
15 <213> Mus musculus
     <400> 43
     Arg IIe His Pro Phe Asp Ser Glu Thr His Cys Ser Gln Lys Phe Lys
                    5
     1
                                       10
20
     Asn
     <210> 44
25
     <211> 6
     <212> PRT
     <213> Mus musculus
30
     <400> 44
     Gly Gly Trp Phe Ala Tyr
                    5
     1
     <210> 45
35
```

<211> 5

```
<212> PRT
     <213> Mus musculus
     <400> 45
 5 Asn Ser Trp Met Asn
                    5
     1
     <210> 46
     <211> 17
10
     <212> PRT
     <213> Mus musculus
     <400> 46
15
     Arg lie Tyr Pro Gly Asp Gly Glu Thr lie Tyr Asn Gly Lys Phe Arg
                                        10
                                                           15
     Val
20
     <210> 47
     <211> 9
     <212> PRT
25
     <213> Mus musculus
     <400> 47
     Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr
     1
                    5
30
     <210> 48
     <211> 5
     <212> PRT
35
     <213> Mus musculus
```

```
<400> 48
     Asn Ser Trp Met Asn
                     5
 5
     <210> 49
     <211> 17
     <212> PRT
     <213> Mus musculus
10
     <400> 49
     Arg lle Tyr Pro Gly Asp Gly Asp Thr lle Tyr Asn Gly Asn Phe Lys
     1
                     5
                                        10
                                                            15
15
     Gly
     <210> 50
     <211> 9
20
     <212> PRT
     <213> Mus musculus
     <400> 50
25
     Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr
     1
                    5
     <210> 51
     <211> 5
30
     <212> PRT
     <213> Mus musculus
     <400> 51
35
     Ser Tyr Thr Met Ser
     1
                    5
```

```
<210> 52
     <211> 17
 5
     <212> PRT
     <213> Mus musculus
     <400> 52
     Thr lie Ser Ser Gly Ser Ser Thr lie Tyr Tyr Ala Asp Thr Val Lys
10
     1
                     5
                                         10
                                                             15
     Gly
15
     <210> 53
     <211> 6
     <212> PRT
     <213> Mus musculus
20
     <400> 53
     Arg Trp Phe Leu Asp Cys
     1
                     5
25
     <210> 54
     <211> 5
     <212> PRT
     <213> Mus musculus
30
     <400> 54
     Ser Ser Trp Met Asn
                     5
35
```

<210> 55

10

```
<211> 17
     <212> PRT
     <213> Mus musculus
    <400> 55
 5
     Arg lie Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys
     1
                    5
     Gly
10
     <210> 56
     <211> 9
     <212> PRT
15
     <213> Mus musculus
     <400> 56
     Ala Arg Lys Thr Ser Trp Phe Ala Tyr
20
     1
                    5
     <210> 57
     <211> 6
25
     <212> PRT
     <213> Mus musculus
     <400> 57
     Ser Asp Tyr Ala Trp Ser
30
     1
                    5
     <210> 58
     <211> 16
35
     <212> PRT
```

<213> Mus musculus

```
<400> 58
     Tyr Ile Thr Tyr Ser Gly Tyr Ser Ile Tyr Asn Pro Ser Leu Lys Ser
     1
                     5
                                         10
                                                             15
 5
     <210> 59
     <211> 7
     <212> PRT
10
     <213> Mus musculus
     <400> 59
     Gly Tyr Asp Asn Met Asp Tyr
     1
                     5
15
     <210> 60
     <211> 16
     <212> PRT
20
     <213> Mus musculus
     <400> 60
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
     1
                     5
                                         10
                                                             15
25
     <210> 61
     <211> 7
     <212> PRT
30
     <213> Mus musculus
     <400> 61
     Arg Met Ser Asn Leu Ala Ser
                     5
```

```
<210> 62
     <211> 9
     <212> PRT
     <213> Mus musculus
 5
     <400> 62
     Met Gln His Leu Glu Tyr Pro Phe Thr
                     5
10
     <210> 63
     <211> 16
     <212> PRT
     <213> Mus musculus
15
     <400> 63
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
     1
                     5
                                         10
                                                            15
20
     <210> 64
     <211> 7
     <212> PRT
     <213> Mus musculus
25
     <400> 64
     Arg Met Ser Asn Leu Ala Ser
     1
                     5
30
     <210> 65
     <211> 9
     <212> PRT
     <213> Mus musculus
35
     <400> 65
```

Met Gln His Leu Glu Tyr Pro Tyr Thr <210> 66 <211> 16 <212> PRT <213> Mus musculus 10 <400> 66 Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr 5 10 15 <210> 67 <211> 7 <212> PRT <213> Mus musculus 20 <400> 67 Arg Met Ser Asn Leu Ala Ser 25 <210> 68 <211> 9 <212> PRT <213> Mus musculus 30 <400> 68 Met Gln His Leu Glu Tyr Pro Tyr Thr 1 5

35 <210> 69 <211> 16

15

```
<212> PRT
     <213> Mus musculus
     <400> 69
   Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
                    5
                                        10
     <210> 70
10
     <211> 7
     <212> PRT
     <213> Mus musculus
     <400> 70
15
     Arg Met Ser Asn Leu Ala Ser
                    5
     1
     <210> 71
     <211> 9
20
     <212> PRT
     <213> Mus musculus
     <400> 71
25
     Met Gln His Leu Glu Tyr Pro Tyr Thr
     1
                    5
     <210> 72
30
     <211> 16
     <212> PRT
     <213> Mus musculus
     <400> 72
35
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
```

5

10

```
<210> 73
     <211> 7
 5
     <212> PRT
     <213> Mus musculus
     <400> 73
     Arg Met Ser Asn Leu Ala Ser
10
     1
                     5
     <210> 74
     <211> 9
15
     <212> PRT
     <213> Mus musculus
     <400> 74
     Met Gln His Leu Glu Tyr Pro Tyr Thr
20
     1
                     5
     <210> 75
     <211> 16
25
     <212> PRT
     <213> Mus musculus
     <400> 75
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
30
     1
                     5
                                         10
                                                             15
     <210> 76
     <211> 7
35
     <212> PRT
```

<213> Mus musculus

```
<400> 76
     Arg Met Ser Asn Leu Ala Ser
                     5
     1
 5
     <210> 77
     ⟨211⟩ 9
     <212> PRT
10
     <213> Mus musculus
     <400> 77
     Met Gln His Leu Glu Tyr Pro Tyr Thr
                     5
     1
15
     <210> 78
     <211> 16
     <212> PRT
20
     <213> Mus musculus
     <400> 78
     Arg Ser Ser Lys Ser Leu Leu Tyr Ser Asn Gly Asn Ile Tyr Leu Tyr
     1
                     5
                                         10
                                                            15
25
     <210> 79
     <211> 7
     <212> PRT
30
     <213> Mus musculus
     <400> 79
     Arg Met Ser Asn Leu Ala Ser
     1
```

```
<210> 80
      <211> 9
      <212> PRT
     <213> Mus musculus
 5
     <400> 80
     Met Gln His Leu Glu Tyr Pro Tyr Thr
                     5
10
     <210> 81
      <211> 16
     <212> PRT
      <213> Mus musculus
15
     <400> 81
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
     1
                     5
                                         10
                                                             15
20
     <210> 82
     ⟨211⟩ 7
     <212> PRT
     <213> Mus musculus
25
     <400> 82
     Arg Met Ser Asn Leu Ala Ser
     1
                     5
30
     <210> 83
     <211> 9
     <212> PRT
     <213> Mus musculus
35
     <400> 83
```

```
Met Gln His Leu Glu Tyr Pro Tyr Thr
                     5
     <210> 84
     <211> 16
     <212> PRT
     <213> Mus musculus
10
     <400> 84
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
     1
                    5
                                        10
                                                            15
15
     <210> 85
     <211> 7
     <212> PRT
     <213> Mus musculus
     <400> 85
20
     Arg Met Ser Asn Leu Ala Ser
                     5
     1
     <210> 86
25
     <211> 9
     <212> PRT
     <213> Mus musculus
30
     <400> 86
     Met Gln His Val Glu Tyr Pro Tyr Thr
     1
                    5
35
     <210> 87
```

<211> 16

15

```
<212> PRT
     <213> Mus musculus
     <400> 87
   Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
     1
                     5
                                        10
     <210> 88
10
     <211> 7
     <212> PRT
     <213> Mus musculus
     <400> 88
15
     Arg Met Ser Asn Leu Ala Ser
     1
                     5
     <210> 89
20
     <211> 9
     <212> PRT
     <213> Mus musculus
     <400> 89
25
     Met Gln His Leu Glu Tyr Pro Tyr Thr
                    5
     1
     <210> 90
30
     <211> 16
     <212> PRT
     <213> Mus musculus
```

5

Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr

10

<400> 90

1

```
<210> 91
     <211> 7
     <212> PRT
     <213> Mus musculus
     <400> 91
     Arg Met Ser Asn Leu Ala Ser
10
     1
                     5
     <210> 92
     <211> 9
     <212> PRT
15
     <213> Mus musculus
     <400> 92
     Met Gln His Leu Glu Tyr Pro Tyr Thr
20
     1
                     5
     <210> 93
     <211> 16
25
     <212> PRT
     <213> Mus musculus
     <400> 93
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
30
                    5
     1
                                        10
                                                            15
     <210> 94
     <211> 7
35
     <212> PRT
     <213> Mus musculus
```

```
<400> 94
     Arg Met Ser Asn Leu Ala Ser
     1
                     5
 5
     <210> 95
     <211> 9
     <212> PRT
10
     <213> Mus musculus
     <400> 95
     Met Gln His Ile Glu Tyr Pro Phe Thr
     1
                     5
15
     <210> 96
     <211> 16
     <212> PRT
20
     <213> Mus musculus
     <400> 96
     Arg Ser Ser Lys Ser Leu Leu Tyr Ser Asn Gly Asn Thr Tyr Leu Tyr
     1
                     5
                                         10
                                                             15
25
     <210> 97
     <211> 7
     <212> PRT
30
     <213> Mus musculus
     <400> 97
     Arg Met Ser Asn Leu Ala Ser
                     5
```

```
<210> 98
     <211> 9
     <212> PRT
     <213> Mus musculus
 5
     <400> 98
     Met Gln His Leu Glu Tyr Pro Tyr Thr
                     5
10
     <210> 99
     <211> 16
     <212> PRT
     <213> Mus musculus
15
     <400> 99
     Arg Ser Ser Lys Ser Leu Leu Tyr Ser Asn Gly Asn lle Tyr Leu Tyr
     1
                     5
                                         10
                                                            15
20
     <210> 100
     <211> 7
     <212> PRT
     <213> Mus musculus
25
     <400> 100
     Arg Met Ser Asn Leu Ala Ser
                     5
30
     <210> 101
     <211> 9
     <212> PRT
     <213> Mus musculus
35
     <400> 101
```

```
Met Gln His Leu Glu Tyr Pro Tyr Thr
 5
     <210> 102
     <211> 16
     <212> PRT
     <213> Mus musculus
10
    <400> 102
     Arg Ser Ser Lys Ser Leu Leu His Asn Asn Gly Asn Thr Tyr Leu Tyr
                                        10
15
     <210> 103
     <211> 7
     <212> PRT
     <213> Mus musculus
20
    <400> 103
     Arg Met Ser Asn Leu Ala Ser
     1
                    5
25
     <210> 104
     <211> 9
     <212> PRT
     <213> Mus musculus
30
     <400> 104
     Met Gln His Ile Glu Tyr Pro Phe Thr
     1
                    5
```

35

<210> 105 <211> 16

15

```
<212> PRT
     <213> Mus musculus
     <400> 105
 5 Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
                                     10
                    5
     <210> 106
10
     <211> 7
     <212> PRT
     <213> Mus musculus
     <400> 106
15
    Arg Met Ser Asn Leu Ala Ser
     1
     <210> 107
     <211> 9
20
     <212> PRT
     <213> Mus musculus
     <400> 107
25
     Met Gln His Leu Glu Tyr Pro Tyr Thr
     1
                   5
     <210> 108
     <211> 15
30
     <212> PRT
     <213> Mus musculus
```

<400> 108

5

Arg Ala Ser Glu Ser Val Glu Tyr Tyr Gly Thr Ser Leu Met Gln

10

35

```
<210> 109
     <211> 7
 5
     <212> PRT
     <213> Mus musculus
     <400> 109
     Gly Ala Ser Asn Val Glu Ser
10
    1
                     5
     <210> 110
     <211> 9
15
     <212> PRT
     <213> Mus musculus
     <400> 110
     Gin Gin Ser Arg Lys Val Pro Trp Thr
20
     1
                    5
     <210> 111
     <211> 11
25
     <212> PRT
     <213> Mus musculus
     <400> 111
     Lys Ala Ser Gln Asn Val Gly Asn Ile Ile Ala
                    5
30
    1
                                        10
     <210> 112
     <211> 7
35
     <212> PRT
```

<213> Mus musculus

```
<400> 112
     Leu Ala Ser Tyr Arg Tyr Ser
     1
                    5
 5
     <210> 113
     <211> 9
     <212> PRT
10
     <213> Mus musculus
     <400> 113
     Gln Gln Tyr Ser Ser Ser Pro Leu Thr
                    5
15
     <210> 114
     <211> 12
     <212> PRT
20
     <213> Mus musculus
     <400> 114
     Ser Ala Ser Ser Ser Val Ser Ser Ser His Leu Tyr
     1
                    5
                                        10
25
     <210> 115
     <211> 7
     <212> PRT
30
     <213> Mus musculus
     <400> 115
     Ser Thr Ser Asn Leu Ala Ser
     1
                    5
```

```
<210> 116
     <211> 9
     <212> PRT
     <213> Mus musculus
 5
     <400> 116
     His Gln Trp Ser Ser Tyr Pro Trp Thr
                     5
10
     <210> 117
     <211> 411
     <212> DNA
     <213> Mus musculus
15
     <220>
     <221> CDS
     <222>
            (1).. (411)
     <223>
20
     <400> 117
     atg gaa tgg cct ttg atc ttt ctc ttc ctc ctg tca gga act gca ggt
                                                                            48
     Met Glu Trp Pro Leu IIe Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly
     1
                     5
                                          10
                                                              15
25
     gtc cac tcc cag gtt cag ctg cag cag tct gga cct gag ctg gtg aag
                                                                            96
     Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys
                 20
                                      25
                                                          30
30
     cct ggg gcc tca gtg aag att tcc tgc aag gct tct ggc tat gca ttc
                                                                           144
     Pro Gly Ala Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe
             35
                                 40
                                                      45
     act aac too tgg atg aac tgg gtg aag cag agg cot gga aag ggt ctt
                                                                           192
35
     Thr Asn Ser Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu
         50
                                                  60
                             55
```

5						gga gaa Gly Glu 75			240
						gca gac Ala Asp			288
10						tct gag Ser Glu			336
15	Tyr Phe			_	Asp Tyr	tcg ttt Ser Phe	_		384
20	caa ggg Gln Gly 130								411
25	<211> 1 <212> P	18 37 RT us muscu	ılus						
30	<400> 1 Met Glu 1		Leu lle 5	Phe Leu	Phe Leu 10	Leu Ser	Gly Thr	Ala Gly 15	
	Val His	Ser Gin 20	Val Gin	Leu Gln	GIn Ser 25	Gly Pro	Glu Leu 30	Val Lys	
35	Pro Gly	Ala Ser 35	Val Lys	lle Ser 40	Cys Lys	Ala Ser	Gly Tyr 45	Ala Phe	

```
Thr Asn Ser Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu
          50
                              55
                                                  60
 5
     Glu Trp lle Gly Arg lle Tyr Pro Gly Asp Gly Glu Thr lle Tyr Asn
                          70
      65
                                              75
                                                                   80
     Gly Lys Phe Arg Val Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser
                      85
                                                               95
10
     Thr Ala Tyr Met Asp IIe Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
                  100
                                      105
                                                           110
     Tyr Phe Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly
15
              115
                                  120
                                                      125
     Gin Gly Thr Leu Val Thr Val Ser Ala
          130
                              135
20
     <210> 119
     <211> 396
     <212> DNA
     <213> Mus musculus
25
     <220>
     <221> CDS
     <222>
            (1).. (396)
     <223>
30
     <400> 119
     atg agg tgc cta gct gag ttc ctg ggg ctg ctt gtg ttc tgg att cct
                                                                             48
     Met Arg Cys Leu Ala Glu Phe Leu Gly Leu Leu Val Phe Trp Ile Pro
                     5
                                          10
                                                               15
35
     gga gcc att ggg gat att gtg atg act cag gct gca ccc tct ata cct
                                                                             96
```

	Gly Ala lle	Gly Asp Ile	Val Met		Ala Ala Pro	Ser Ile	Pro
		20		25		30	
	gtc act cct	gga gag tca	gta tcc	atc tcc	tgt agg tct	agt aag	agt 144
5	Val Thr Pro	Gly Glu Ser	Val Ser	lle Ser	Cys Arg Ser	Ser Lys	Ser
	35		40		45		
	ctc ctg cat	agt aat ggo	aac act	tac ttg	tat tgg ttc	ctg cag	agg 192
	Leu Leu His	Ser Asn Gly	Asn Thr	Tyr Leu	Tyr Trp Phe	Leu Gln	Arg
10	50		55		60		
	cca ggc cag	tct cct ca	ctc ctg	ata tat	cgg atg tcc	aac ctt	gcc 240
		Ser Pro Gli					_
	65	70			75		80
15							
		cca gat agg					
	ser diy vai	Pro Asp Arg 85	; rne ser	gry ser	diy ser diy	onr Ata	rne
		33					
20	aca ctg aga	atc agt aga	gtg gag	gct gag	gat gtg ggt	gtt tat	tac 336
	Thr Leu Arg	lle Ser Arg	y Val Glu		Asp Val Gly		Tyr
		100		105		110	
	tgt atg caa	cat ata gaa	tat cct	ttt acg	ttc gga tcg	ggg acc	aag 384
25	Cys Met Gin	His Ile Glu	Tyr Pro	Phe Thr	Phe Gly Ser	Gly Thr	Lys
	115		120		. 125		
	ctg gaa ata	aaa				·	396
	Leu Glu lle	Lys					
30	130						
	<210> 120						
	<211> 132						
35	<212> PRT						
	<213> Mus	musculus					

<400> 120 Met Arg Cys Leu Ala Glu Phe Leu Gly Leu Leu Val Phe Trp Ile Pro Gly Ala lle Gly Asp lle Val Met Thr Gln Ala Ala Pro Ser lle Pro Val Thr Pro Gly Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser Pro Gln Leu Leu IIe Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His IIe Glu Tyr Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys <210> 121 <211> 762 <212> DNA <213> Mus musculus

<400> 121

	atggaatggc	ctttgatctt	tctcttcctc	ctgtcaggaa	ctgcaggtgt	ccactcccag	60
	gttcagctgc	agcagtctgg	acctgagctg	gtgaagcctg	gggcctcagt	gaagatttcc	120
5	tgcaaggctt	ctggctatgc	attcactaac	tcctggatga	actgggtgaa	gcagaggcct	180
	ggaaagggtc	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	240
10	gggaaattca	gggtcaaggc	cacactgact	gcagacaaat	cctccagcac	agcctacatg	300
	gatatcagca	gcctgacatc	tgaggactct	gcggtctact	tctgtgcaag	aggctatgat	360
	gattactcgt	ttgcttactg	gggccaaggg	actctggtca	ctgtctctgc	aggtggtggt	420
15	ggttcggata	ttgtgatgac	tcaggctgca	ccctctatac	ctgtcactcc	tggagagtca	480
	gtatccatct	cctgtaggtc	tagtaagagt	ctcctgcata	gtaatggcaa	cacttacttg	540
20	tattggttcc	tgcagaggcc	aggccagtct	cctcaactcc	tgatatatcg	gatgtccaac	600
	cttgcctcag	gagtcccaga	taggttcagt	ggcagtgggt	caggaactgc	tttcacactg	660
	agaatcagta	gagtggaggc	tgaggatgtg	ggtgtttatt	actgtatgca	acatatagaa	720
25	tatcctttta	cgttcggatc	ggggaccaag	ctggaaataa	aa		762

<210> 122

<211> 254

30 <212> PRT

<213> Mus musculus

<400> 122

Met Glu Trp Pro Leu Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly

35 1 5 10 15

	Val	His	Ser	GIn 20	Val	GIn	Leu	Gin	GIn 25	Ser	Gly	Pro	Glu	Leu 30	Val	Lys
5	Pro	Gly	Ala 35	Ser	Val	Lys	lle	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Ala	Phe
	Thr	Asn 50	Ser	Trp	Met	Asn	Trp 55	Val	Lys	GIn	Arg	Pro 60	Gly	Lys	Gly	Leu
10	Glu 65	Trp	He	Gly	Arg	11e 70	Tyr	Pro	Gly	Asp	Gly 75	Glu	Thr	He	Tyr	Asn 80
15	Gly	Lys	Phe	Arg	Va I 85	Lys	Ala	Thr	Leu	Thr 90	Ala	Asp	Lys	Ser	Ser 95	Ser
	Thr	Ala	Tyr	Met 100	Asp	He	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val
20	Tyr	Phe	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
	Gln	Gly 130	Thr	Leu	Val	Thr	Va I 135	Ser	Ala	Gly	Gly	Gly 140	Gly	Ser	Asp	lle
25	Val 145	Met	Thr	GIn	Ala	Ala 150	Pro	Ser	lle	Pro	Va I 155	Thr	Pro	Gly	Glu	Ser 160
30	Val	Ser	He	Ser	Cys 165	Arg	Ser	Ser	Lys	Ser 170	Leu	Leu	His	Ser	Asn 175	Gly
	Asn	Thr	Tyr	Leu 180	Tyr	Trp	Phe	Leu	Gin 185	Arg	Pro	Gly	GIn	Ser 190	Pro	GIn
35	Leu	Leu	lle 195	Tyr	Arg	Met	Ser	Asn 200	Leu	Ala	Ser	Gly	Va I 205	Pro	Asp	Arg

	Phe	Ser 210	Gly	Ser	Gly	Ser	Gly 215	Thr	Ala	Phe	Thr	Leu 220	Arg	lle	Ser	Arg
5	Va I 225	Glu	Ala	Glu	Asp	Va I 230	Gly	Val	Tyr	Tyr	Cys 235	Met	GIn	His	lle	Glu 240
	Tyr	Pro	Phe	Thr	Phe 245	Gly	Ser	Gly	Thr	Lys 250	Leu	Glu	lle	Lys		
10																
	<210)> 1	23													
	<211	1> 6	35													
	<212	2> F	PRT													
	<213	3> H	lomo	sap	ens											
15																
	<400)> 1	23													
	Met	Pro	Ser	Trp	Ala	Leu	Phe	Met	Val	Thr	Ser	Cys	Leu	Leu	Leu	Ala
	1				5					10					15	
20	Pro	GIn	Asn	Leu 20	Ala	GIn	Val	Ser	Ser 25	Gln	Asp	Val	Ser	Leu 30	Leu	Ala
	Sor	Acn	Sar	G Lu	Dro	Lou	Lvo	Cvc	Dho	Sor	Ara	Thr	Dho	Glu	Acn	Lau
25	361	voh	35	uiu	710	Leu	Lys	40	LIIG	361	AI B	1111	Phe 45	uiu	veh	Leu
25	T 1	•	D)	_		0.1	.	•						т.	_	0.1
	Inr	50	Phe	Irp	Asp	Glu	61u 55	Glu	Ala	Ala	Pro	Ser 60	Gly	Ihr	lyr	GIN
	l eu	l eu	Tvr	Ala	Tvr	Pro	Arg	Glu	lvs	Pro	Arg	Ala	Cys	Pro	Leu	Ser
30	65		. , .		. ,	70	6		_, _	•	75	•	-,-			80
						. •										
	Ser	GIn	Ser	Met	Pro 85	His	Phe	Gly	Thr	Arg 90	Tyr	Val	Cys	Gin	Phe 95	Pro
35	Asp	GIn	Glu	Glu 100	Val	Arg	Leu	Phe	Phe 105	Pro	Leu	His	Leu	Trp 110	Val	Lys

	Asn	Val	Phe 115	Leu	Asn	Gln	Thr	Arg 120	Thr	Gln	Arg	Val	Leu 125	Phe	Val	Asp
5	Ser	Val 130	Gly	Leu	Pro	Ala	Pro 135	Pro	Ser	lle	lle	Lys 140	Ala	Met	Gly	Gly
10	Ser 145	Gin	Pro	Gly	Glu	Leu 150	Gln	lle	Ser	Trp	Glu 155	Glu	Pro	Ala	Pro	Glu 160
	lle	Ser	Asp	Phe	Leu 165	Arg	Tyr	Glu	Leu	Arg 170	Tyr	Gly	Pro	Arg	Asp 175	Pro
15	Lys	Asn	Ser	Thr 180	Gly	Pro	Thr	Val	lle 185	Gin	Leu	lle	Ala	Thr 190	Glu	Thr
	Cys	Cys	Pro 195	Ala	Leu	Gln	Arg	Pro 200	His	Ser	Ala	Ser	Ala 205	Leu	Asp	GIn
20	Ser	Pro 210	Cys	Ala	Gln	Pro	Thr 215	Met	Pro	Trp	Gin	Asp 220	Gly	Pro	Lys	Gln
25	Thr 225	Ser	Pro	Ser	Arg	Glu 230	Ala	Ser	Ala	Leu	Thr 235	Ala	Glu	Gly	Gly	Ser 240
	Cys	Leu	lle	Ser	Gly 245					Asn 250			Trp	Leu	GIn 255	
30	Arg	Ser	Glu	Pro 260	Asp	Gly	lle	Ser	Leu 265	Gly	Gly	Ser	Trp	Gly 270	Ser	Trp
	Ser	Leu	Pro 275	Val	Thr	Val	Asp	Leu 280	Pro	Gly	Asp	Ala	Va I 285	Ala	Leu	Gly
35	Leu	GIn 290	Cys	Phe	Thr	Leu	Asp 295	Leu	Lys	Asn	Val	Thr 300	Cys	Gln	Trp	GIn

	GIn 305	GIn	Asp	His	Ala	Ser 310	Ser	GIn	Gly	Phe	Phe 315	Tyr	His	Ser	Arg	Ala 320
5	Arg	Cys	Cys	Pro	Arg 325	Asp	Arg	Tyr	Pro	11e 330	Trp	Glu	Asn	Cys	Glu 335	Glu
10	Glu	Glu	Lys	Thr 340	Asn	Pro	Gly	Leu	GIn 345	Thr	Pro	Gln	Phe	Ser 350	Arg	Cys
	His	Phe	Lys 355	Ser	Arg	Asn	Asp	Ser 360	lle	lle	His	He	Leu 365	Val	Glu	Val
15	Thr	Thr 370	Ala	Pro	Gly	Thr	Va I 375	His	Ser	Tyr	Leu	Gly 380	Ser	Pro	Phe	Trp
	11e 385	His	GIn	Ala	Val	Arg 390	Leu	Pro	Thr	Pro	Asn 395	Leu	His	Trp	Arg	Glu 400
20	lle	Ser	Ser	Gly	His 405	Leu	Glu	Leu	Glu	Trp 410	GIn	His	Pro	Ser	Ser 415	Trp
25	Ala	Ala	GIń	Glu 420	Thr	Cys	Tyr	GIn	Leu 425	Arg	Tyr	Thr	Gly	GIu 430	Gly	His
	GIn	Asp	Trp 435								Gly		Arg 445	Gly	Gly	Thr
30	Leu	Glu 450	Leu	Arg	Pro	Arg	Ser 455	Arg	Tyr	Arg	Leu	GIn 460	Leu	Arg	Ala	Arg
	Leu 465	Asn	Gly	Pro	Thr	Tyr 470	Gln	Gly	Pro	Trp	Ser 475	Ser	Trp	Ser	Asp	Pro 480
35	Thr	Arg	Val	Glu	Thr 485	Ala	Thr	Glu	Thr	Ala 490	Trp	He	Ser	Leu	Va I 495	Thr

	Ala Le	eu His	Leu 500	Val	Leu	Gly	Leu	Ser 505	Ala	Val	Leu	Gly	Leu 510	Leu	Leu
5	Leu Ai	g Trp 515	GIn	Phe	Pro	Ala	His 520	Tyr	Arg	Arg	Leu	Arg 525	His	Ala	Leu
10	Trp Pr	o Ser 30	Leu	Pro	Asp	Leu 535	His	Arg	Val	Leu	Gly 540	GIn	Tyr	Leu	Arg
	Asp Th	nr Ala	Ala	Leu	Ser 550	Pro	Pro	Lys	Ala	Thr 555	Val	Ser	Asp	Thr	Cys 560
15	Glu G	lu Val	Glu	Pro 565	Ser	Leu	Leu	Glu	lle 570	Leu	Pro	Lys	Ser	Ser 575	Glu
	Arg Th	nr Pro	Leu 580	Pro	Leu	Cys	Ser	Ser 585	GIn	Ala	GIn	Met	Asp 590	Tyr	Arg
20	Arg Le	eu Gln 595	Pro	Ser	Cys	Leu	Gly 600	Thr	Met	Pro	Leu	Ser 605	Val	Cyś	Pro
25		et Ala 10	Glu	Ser	Gly	Ser 615	Cys	Cys	Thr	Thr	His 620	He	Ala	Asn	His
	Ser Ty	r Leu	Pro	Leu	Ser 630	Tyr	Trp	Gln	GIn	Pro 635					
30	<210> <211> <212> <213>	124 122 PRT Mus r	nuscu	ılus											
35	<400> GIn Va		Leu	Gln	Gin	Ser	Gly	Pro	Glu	Leu	Val	Lys	Pro	Gly	Ala

Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Ser Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu Glu Trp IIe Gly Arg Thr Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Gly Trp lie Leu Ala Asp Gly Gly Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala <210> 125 <211> 112 <212> PRT <213> Mus musculus <400> 125 Asp lle Val Met Thr Gln Ala Ala Pro Ser lle Pro Val Thr Pro Gly Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser

	Asn	Gly	Asn 35	Thr	Tyr	Leu	Tyr	Trp 40	Phe	Leu	Gin	Arg	Pro 45	Gly	Gin	Ser
5	Pro	GIn 50	Leu	Leu	He	Tyr	Arg 55	Met	Ser	Asn	Leu	Ala 60	Ser	Gly	Val	Pro
	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Ala 75	Phe	Thr	Leu	Arg	lle 80
10	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	lle 90	Tyr	Tyr	Cys	Met	GIn 95	His
15	Leu	Glu	Tyr	Pro 100	Phe	Thr	Phe	Gly	Thr 105	Gly	Thr	Lys	Leu	Glu 110	lle	Lys
20	<210 <211 <212 <213	1> 1 2> f	126 118 PRT Mus m	nusci	ılus											
25	<400 GIn 1		126 GIn	Leu	GIn 5	GIn	Ser	Gly	Pro	Glu 10	Leu	Vai	Lys	Pro	Gly 15	Ala
	Ser	Val	Lys	lle 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ala	Phe	Ser 30	Ser	Ser
30	Trp	Met	Asn 35	Trp	Val	Lys	GIn	Arg 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	He
	Gly	Arg 50	He	Tyr	Pro	Gly	Asp 55	Gly	Asp	Thr	Asn	Tyr 60	Asn	Gly	Lys	Phe
35	Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80

Ile Gin Leu Ser Ser Leu Thr Ser Giu Asp Ser Ala Vai Tyr Phe Cys
85 90 95

Ala Arg Giy Tyr Ala Asp Tyr Ser Phe Ala Tyr Trp Giy Gin Giy Thr
100 105 110

Leu Val Thr Val Ser Ala 115

10

5

<210> 127

<211> 112

<212> PRT

15 <213> Mus musculus

<400> 127

Asp lie Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly
1 5 10 15

20

Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser 20 25 30

Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser
35 40 45

Pro Gin Leu Leu IIe Tyr Arg Met Ser Asn Leu Ala Ser Giy Vai Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg IIe
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 85 90 95

35

Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys

100 105 110

<210> 128

5 <211> 118

<212> PRT

<213> Mus musculus

<400> 128

15

30

10 Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Ser 20 25 30

Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu Glu Trp lie 35 40 45

Gly Arg Ile Tyr Pro Gly Asp Gly Glu Thr Asn Tyr Asn Gly Lys Phe 20 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Ala Tyr 65 70 75 80

25 Met Gin Leu Ser Ser Leu Thr Ser Giu Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Arg Gly Phe Gly Asp Tyr Ser Phe Ala Tyr Trp Gly Gin Gly Thr
100 105 110

Leu Val Thr Val Ser Ala 115

35 <210> 129 <211> 112

```
<212> PRT
     <213> Mus musculus
     <400> 129
     Asp lie Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly
     1
                     5
                                          10
                                                              15
     Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser
                 20
                                      25
10
     Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser
             35
                                  40
                                                      45
     Pro Gin Leu Leu Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Ala Pro
         50
15
                             55
                                                  60
     Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile
     65
                         70
                                              75
                                                                  80
20
     Ser Arg Val Glu Thr Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His
                     85
                                          90
                                                              95
     Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu ile Lys
                 100
                                      105
                                                          110
25
     <210> 130
     <211> 118
     <212> PRT
30
     <213> Mus musculus
     <400> 130
```

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser Ser

Gin Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys Pro Gly Ala

Trp Met Asn Trp Val Lys Gin Arg Pro Gly Lys Gly Leu Glu Trp Ile Gly Arg Ile Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gin Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Ser Gly Tyr Ala Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala <210> 131 <211> 112 <212> PRT <213> Mus musculus <400> 131 Asp lie Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser

Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser

Pro Gin Leu Leu Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys <210> 132 <211> 118 <212> PRT <213> Mus musculus <400> 132 Gin Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys Pro Gly Ala Ser Val Lys lie Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Arg Ser Trp Met Asn Trp Val Lys Gin Arg Pro Gly Lys Gly Leu Glu Trp Ile Gly Arg lle Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys

Ala Ser Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr 100 105 110

5 Leu Val Thr Val Ser Ala115

<210> 133

10 <211> 112

<212> PRT

<213> Mus musculus

<400> 133

15 Asp IIe Val Met Thr Gln Ala Ala Pro Ser Val Pro Val Thr Pro Gly
1 5 10 15

Glu Ser Val Ser IIe Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser 20 25 30

Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser
35 40 45

Pro Gln Leu Leu IIe Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro 25 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg 11e 65 70 75 80

30 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 85 90 95

Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu He Lys
100 105 110

```
<210> 134
     <211> 118
     <212> PRT
     <213> Mus musculus
 5
     <400> 134
     Gin Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
                     5
                                          10
                                                              15
10
     Ser Val Lys IIe Ser Cys Arg Ala Phe Gly Tyr Ala Phe Ser Asn Ser
                 20
                                      25
                                                          30
     Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu Glu Trp Ile
             35
                                  40
                                                      45
15
     Gly Arg Ile Tyr Pro Gly Asp Gly Glu Thr Asn Asn Asn Gly Lys Phe
         50
                              55
                                                  60
     Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
20
     65
                         70
                                              75
                                                                  80
     Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
                     85
                                          90
                                                              95
     Ala Arg Gly Tyr Gly Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr
25
                 100
                                     105
                                                          110
     Leu Val Thr Val Ser Ala
             115
30
     <210> 135
     <211> 112
     <212> PRT
```

<213> Mus musculus

<400> 135 Asp lie Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser Pro Gin Leu Leu ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Ala Ala Phe Thr Leu Arg Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys <210> 136 <211> 115 <212> PRT <213> Mus musculus <400> 136 Gin Val Gin Leu Gin Gin Pro Giy Ala Giu Leu Val Lys Pro Giy Ala

Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30

Trp Val Asn Trp Val Lys Gln Arg Pro Gly Arg Gly Leu Glu Trp Ile

Gly Arg Ile His Pro Ser Asp Ser Glu Thr His Cys Asn Gln Lys Phe Lys Arg Lys Ala Thr Leu Thr Val Asn Lys Ser Ser Ser Thr Ala Tyr lle Gln Leu His Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Thr Ser Gly Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala <210> 137 <211> 112 <212> PRT <213> Mus musculus <400> 137 Asp lie Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly

Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu Tyr Ser 20 25 30

Asn Gly Asn Ile Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser 35 40 45

Pro Gin Leu Leu IIe Tyr Arg Met Ser Asn Leu Ala Ser Giy Val Pro 35 50 55 60

	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Ala 75	Phe	Thr	Leu	Arg	lle 80
5	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Va I 90	Tyr	Tyr	Cys	Met	GIn 95	His
	Leu	Glu	Tyr	Pro 100	Tyr	Thr	Phe	Gly	Ser 105	Gly	Thr	Lys	Leu	Glu 110	lle	Lys
10																
	<210)> .	138													
	<21	۱> ۰	118													
	<212	2> F	PRT													
	<213	3> M	Mus n	nusci	alus											
15														•		
	<400)> 1	138													
		Val	Gln	Leu		GIn	Ser	Gly	Pro		Leu	Val	Lys	Pro		Ala
	1				5					10					15	
20	Ser	Val	Lys	lle 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ala	Phe	Ser 30	Ser	Ser
25	Trp	Met	Asn 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	lle
23	Gly	Arg 50	lle	Tyr	Pro	Gly	Asp 55	Gly	Glu	Thr	Asn	Asn 60	Asn	Gly	Lys	Phe
30	Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Ser	Thr	Thr	Ala	Tyr 80
	Met	GIn	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
35	Ala	Arg	Gly	Tyr 100	Gly	Asp	Tyr	Ser	Phe 105	Ala	Tyr	Trp	Gly	GIn 110	Gly	Thr

Leu Val Thr Val Ser Ala 115

5

<210> 139

<211> 112

<212> PRT

<213> Mus musculus

10

<400> 139

Asp lie Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly

1 5 10 15

15 Glu Ser Val Ser lle Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser 20 25 30

Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser 35 40 45

20

Pro Gln Leu Leu IIe Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Ala Ala Phe Thr Leu Arg IIe
25 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 85 90 95

Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys
100 105 110

<210> 140

35 <211> 118

<212> PRT

<213> Mus musculus

<400> 140

Gin Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys Pro Gly Ala

 Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Thr Ser

Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu Glu Trp IIe

Gly Arg Ile Tyr Pro Gly Asp Gly Glu Ala Asn Tyr Asn Gly Lys Phe

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Ser Ala Tyr

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Vai Tyr Phe Cys

Ala Arg Gly Tyr Gly Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr

Leu Val Thr Val Ser Ala

<210> 141

<211> 112

<212> PRT

<213> Mus musculus

<400> 141

Asp lle Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly

	Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser 20 25 30
5	Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Met Gln Arg Pro Gly Gln Ser 35 40 45
10	Pro Gin Leu Leu Ile Tyr Arg Met Ser Asn Leu Ala Ser Giy Vai Pro 50 55 60
10	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile 65 70 75 80
15	Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 85 90 95
	Val Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys 100 105 110
20	
	<210> 142
	<211> 118
	<212> PRT <213> Mus musculus
25	
	<400> 142
	Gin Vai Gin Leu Gin Gin Ser Gly Pro Glu Leu Vai Lys Pro Gly Ala 1 5 10 15
30	Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Ser 20 25 30
	Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Pro Glu Trp Ile 35 40 45
35	

Gly Arg Ile Tyr Pro Gly Asp Gly Glu Thr Asn Tyr Asn Gly Lys Phe

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Val Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Gly Tyr Gly Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala <210> 143 <211> 112 <212> PRT <213> Mus musculus <400> 143 Asp lle Val Met Thr Gln Ala Ala Pro Ser Val Pro Val Thr Pro Gly Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser Pro Gin Leu Leu Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 85 90 95

Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys
5 100 105 110

<210> 144

<211> 118

10 <212> PRT

25

<213> Mus musculus

<400> 144

Gin Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Leu Asn Pro Gly Ala
15 1 5 10 15

Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Arg Ser 20 25 30

Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu Glu Trp IIe
35 40 45

Gly Arg IIe Tyr Pro Gly Asp Gly Glu Thr Asn Tyr Asn Gly Lys Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Thr Thr Ala Tyr 65 70 75 80

Met Gin Phe Ser Ser Leu Thr Ser Giu Asp Ser Ala Val Tyr Phe Cys 30 85 90 95

Ala Arg Gly Asp Gly Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr
100 105 110

35 Leu Val Thr Val Ser Ala 115

```
<210> 145
     <211> 112
 5
     <212> PRT
     <213> Mus musculus
     <400> 145
     Asp lle Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly
                     5
10
     1
                                          10
                                                              15
     Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser
                 20
                                      25
                                                          30
15
     Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser
             35
     Pro Gln Leu Leu ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro
         50
                             55
                                                  60
20
     Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile
     65
                                                                  80
                         70
     Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His
25
                     85
                                          90
                                                              95
     Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys
                 100
                                      105
                                                          110
30
     <210> 146
     <211> 115
     <212> PRT
     <213> Mus musculus
```

<400> 146

	GIn 1	Val	GIn	Leu	GIn 5	GIn	Pro	Gly	Thr	Glu 10	Leu	Val	Arg	Pro	Gly 15	Ala
5	Ser	Val	Lys	Leu 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
	Trp	Val	Asn 35	Trp	Val	Lys	GIn	Arg 40	Pro	Gly	Arg	Gly	Leu 45	Glu	Trp	lle
10	Gly	Arg 50	lle	His	Pro	Tyr	Asp 55	Ser	Glu	Thr	His	Tyr 60	Asn	GIn	Lys	Phe
15	Lys 65	Asn	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
15	lle	GIn	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Cys
20	Ala	Ser	Gly	Gly 100	Trp	Phe	Ala	Ser	Trp 105	Gly	Gln	Gly	Thr	Leu 110	Val	Thr
	Val	Ser	Ala 115		•											
25																
	<210)> .	147													
	<211		112													
	<212 <213		PRT Mus n	nuscu	ılue											
30	1210	, ,	1100 II	114500	1100											
	<400)> -	147													
	Asp 1	lle	Val	Met	Thr 5	GIn	Ala	Ala	Pro	Ser 10	Val	Pro	Val	Thr	Pro 15	Gly
35	Glu	Ser	Val	Ser 20	lle	Ser	Cys	Arg	Ser 25	Ser	Lys	Ser	Leu	Leu 30	Tyr	Ser

Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser 35 40 45

5 Pro Gln Leu Leu Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro

50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Thr 11e 75 80

Ser Ser Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 85 90 95

Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu lle Lys
15 100 105 110

<210> 148

<211> 115

20 <212> PRT

10

25

35

<213> Mus musculus

<400> 148

Gin Val Gin Leu Gin Gin Pro Giy Ala Giu Leu Val Lys Pro Giy Ala
1 5 10 15

Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30

Trp Met Asn Trp Val Lys Gin Arg Pro Gly Arg Gly Leu Glu Trp Ile
35 40 45

Gly Arg Ile His Pro Phe Asp Ser Glu Thr His Cys Ser Gln Lys Phe
50 55 60

Lys Asn Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Asn Thr Ala Tyr

lle Gln Phe Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ser Ser Gly Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala <210> 149 <211> 112 <212> PRT <213> Mus musculus <400> 149 Asp lle Val Met Thr Gin Ala Ala Pro Ser Val Ser Val Thr Pro Gly Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu Tyr Ser Asn Gly Asn lie Tyr Leu Tyr Trp Phe Leu Gin Arg Pro Gly Gin Ser Pro Gin Leu Leu ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys IIe

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His

Leu Glu Tyr Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys
100 105 110

5 <210> 150

<211> 118

<212> PRT

<213> Mus musculus

10 <400> 150

Gin Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Ser 15 20 25 30

Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp IIe 35 40 45

20 Gly Arg lie Tyr Pro Gly Asp Gly Glu Thr lie Tyr Asn Gly Lys Phe
50 55 60

Arg Val Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Met Glu lle Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr 30 100 105 110

Leu Val Thr Val Ser Ala 115

35

<211> 112 <212> PRT <213> Mus musculus <400> 151 Asp lie Val Met Thr Gin Ala Ala Pro Ser Val Pro Val Thr Pro Gly Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Asn Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser Pro Gin Leu Leu IIe Tyr Arg Met Ser Asn Leu Ala Ser Giy Vai Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg IIe Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His lle Glu Tyr Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys <210> 152 <211> 118 <212> PRT <213> Mus musculus

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala

<400> 152

	Ser Val	Lys	11e 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ala	Phe	Ser 30	Asn	Ser
5	Trp Met	Asn 35	Trp	Val	Asn	GIn	Arg 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	lle
	Gly Arg 50	lle	Tyr	Pro	Gly	Asp 55	Gly	Asp	Thr	lle	Tyr 60	Asn	Gly	Asn	Phe
10	Lys Gly 65	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Ser	Ser	He	Ala	Tyr 80
15	Met Gin	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
13	Thr Ser	Gly	Tyr 100	Asp	Asp	Tyr	Ser	Phe 105	Ala	Tyr	Trp	Gly	GIn 110	Gly	Thr
20	Leu Val	Thr 115	Val	Ser	Ala										
25	<211> <212> I	153 112 PRT Mus m	nusci	ılus											
30	<400> Asp e	153 Val	Met	Thr 5	GIn	Ala	Ala	Pro	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
	Glu Ser	Val	Ser 20	lle	Ser	Cys	Arg	Ser 25	Ser	Lys	Ser	Leu	Leu 30	His	Ser
35	Asn Gly	Asn	Thr	Tyr	Leu	Tyr	Trp	Phe	Leu	GIn	Arg	Pro	Gly	GIn	Ser

	Pro	50	Leu	Leu	iie	ıyr	55	Met	ser	ASII	Leu	60	ser	ч	vai	Pro	
5	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Ala 75	Phe	Thr	Leu	Arg	lle 80	
10	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Va I 90	Tyr	Tyr	Cys	Met	GIn 95	His	
10	Leu	Glu	Tyr	Pro 100	Tyr	Thr	Phe	Gly	Ser 105	Gly	Thr	Lys	Leu	Glu 110	lle	Lys	
15	<210 <211 <212	1> 4 2> I	154 423 DNA														
	<213	3> 1	Mus n	nusci	alus												
20	<220 <220 <220 <220	1> (2>	CDS (1)	(423	3)												
25	<400)> ·	154														
									agc Ser								48
30									atg Met 25								96
35									gga Gly								144

	gca	gcc	tct	gga	ttc	act	ttc	agt	agc	tat	acc	atg	tct	tgg	gtt	cgc	192
	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr	Thr	Met	Ser	Trp	Val	Arg	
		50					55					60					
5																	
	cag	act	ccg	gcg	aag	agg	ctg	gag	tgg	gtc	gca	acc	att	agt	agt	ggc	240
	Gln	Thr	Pro	Ala	Lys	Arg	Leu	Glu	Trp	Val	Ala	Thr	He	Ser	Ser	Gly	
	65					70					75					80	
10	agt	agt	acc	atc	tac	tat	gca	gac	aca	gtg	aag	ggc	cga	ttc	acc	atc	288
	Ser	Ser	Thr	lle	Tyr	Tyr	Ala	Asp	Thr	Val	Lys	Gly	Arg	Phe	Thr	He	
					85					90					95		
	tcc	aga	gac	aat	gcc	aag	aac	acc	ctg	ttc	ctg	caa	atg	acc	agt	cta	336
15	Ser	Arg	Asp	Asn	Ala	Lys	Asn	Thr	Leu	Phe	Leu	Gln	Met	Thr	Ser	Leu	
				100					105					110			
	agg	tct	gag	gac	aca	gcc	atg	tat	tac	tgt	gca	agg	aga	tgg	ttt	ctt	384
	Arg	Ser	Glu	Asp	Thr	Ala	Met	Tyr	Tyr	Cys	Ala	Arg	Arg	Trp	Phe	Leu	
20			115					120					125				
	gac	tgc	tgg	ggc	caa	ggc	acc	act	ctc	aca	gtc	tcc	tcg				423
	Asp	Cys	Trp	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser				
		130					135					140					
25																	
	<210)> 1	55														
	<21	l> 1	41														
	<212	2> F	PRT														
30	<213	3> N	lus n	nuscu	ılus												
	<400)> 1	55														
	Met	Val	Leu	Ala	Ser	Ser	Thr	Thr	Ser	He	His	Thr	Met	Leu	Leu	Leu	
	1				5					10	-				15		
35																	
	Leu	Leu	Met	Leu	Ala	Gln	Pro	Ala	Met	Ala	Glu	Val	Lys	Leu	Val	Glu	

20 25 30

Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Arg Lys Leu Ser Cys 35 40 45

5

Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Thr Met Ser Trp Val Arg 50 55 60

GIn Thr Pro Ala Lys Arg Leu Glu Trp Val Ala Thr Ile Ser Ser Gly
10 65 70 75 80

Ser Ser Thr lie Tyr Tyr Ala Asp Thr Val Lys Gly Arg Phe Thr lie 85 90 95

15 Ser Arg Asp Asn Ala Lys Asn Thr Leu Phe Leu Gln Met Thr Ser Leu
100 105 110

Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Arg Trp Phe Leu 115 120 125

20

Asp Cys Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser 130 135 140

25 〈210〉 156

<211> 357

<212> DNA

<213> Mus musculus

30 <220>

<221> CDS

<222> (1).. (357)

<223>

35 <400> 156

gat att gtg ctc acc caa tct cca gct tct ttg gct gtg tct cta ggg

	Asp	He	Val	Leu	Thr	Gln	Ser	Pro	Ala	Ser	Leu	Ala	Val	Ser	Leu	Gly	
	1				5					10					15		
	cag	agt	gtc	acc	atc	tcc	tgc	aga	gcc	agt	gaa	agt	gtt	gaa	tat	tat	96
5	Gln	Ser	Val		He	Ser	Cys	Arg		Ser	Glu	Ser	Val		Tyr	Tyr	
				20					25					30			
				44.			.										144
											aaa						144
10	uly	1111	35	Leu	MEL	din	irp	1yr 40	dill	um	Lys	F1 0	45	uin	FIO	FIO	
10			33					40					70				
	aaa	ctc	ctc	atc	tat	ggt	gca	tcc	aac	gta	gaa	tct	ggg	gtc	cct	gcc	192
											Glu						
		50					55					60					
15																	
	agg	ttt	agt	ggc	agt	ggg	tct	ggg	aca	gac	ttc	agc	ctc	aac	atc	cat	240
	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Ser	Leu	Asn	He	His	
	65					70					75					80	
20											ttc						288
	Pro	Val	Glu	Glu		Asp	He	Ala	Met		Phe	Cys	GIn	Gln		Arg	
					85					90					95		
	224	σ++	ccr	+ ~ ~	201	++0	aat	aas	aac	200	aag	c+a	maa	2+2	221	пас	336
25											Lys						330
23	Lyo	vu.	110	100		1110	uly		105	••••	Lyo	Lou	uiu	110	_,0	ЛОР	
	tac	aag	gat	gac	gac	gat	aag										357
	Tyr	Lys	Asp	Asp	Asp	Asp	Lys										
30			115														
	<210		157														
	<211		119														
35	<212		PRT •														
	<213	5> N	Mus n	nusci	ılus												

<400> 157 Asp lle Val Leu Thr Gin Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gin Ser Val Thr IIe Ser Cys Arg Ala Ser Glu Ser Val Glu Tyr Tyr Gly Thr Ser Leu Met Gln Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu lle Tyr Giy Ala Ser Asn Val Giu Ser Giy Val Pro Ala Arg Phe Ser Gly Ser Gly Thr Asp Phe Ser Leu Asn Ile His Pro Val Glu Glu Asp Asp IIe Ala Met Tyr Phe Cys Gln Gln Ser Arg Lys Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Asp Tyr Lys Asp Asp Asp Lys <210> 158 <211> 432 <212> DNA

<213> Mus musculus <220> <221> CDS <222> (1).. (432) <223>

	<400)> .	158														
	atg	gtt	ctt	gcc	agc	tct	acc	acc	agc	atc	cac	acc	atg	ctg	ctc	ctg	48
	Met	Val	Leu	Ala	Ser	Ser	Thr	Thr	Ser	Пe	His	Thr	Met	Leu	Leu	Leu	
5	1				5					10					15		
	ctc	ctg	atg	ctg	gcc	cag	ccg	gcc	atg	gcg	cag	gtt	cag	ctc	cag	caa	96
	Leu	Leu	Met	Leu	Ala	Gln	Pro	Ala	Met	Ala	Gln	Val	Gln	Leu	Gln	GIn	
				20					25					30			
10																	
	tct	gga	cct	gag	ctg	gtg	aag	cct	ggg	gcc	tca	gtg	aag	att	tcc	tgc	144
	Ser	Gly	Pro	Glu	Leu	Val	Lys	Pro	Gly	Ala	Ser	Val	Lys	He	Ser	Cys	
			35					40					45				
15	aag	gct	tct	ggc	tat	gca	ttc	agt	agc	tcc	tgg	atg	aac	tgg	atg	aag	192
	Lys	Ala	Ser	Gly	Tyr	Ala	Phe	Ser	Ser	Ser	Trp	Met	Asn	Trp	Met	Lys	
		50					55					60					
	cag	agg	cct	gga	aag	ggt	ctt	gag	tgg	att	ggg	cgg	att	tat	cct	gga	240
20	Gln	Arg	Pro	Gly	Lys	Gly	Leu	Glu	Trp	He	Gly	Arg	He	Tyr	Pro	Gly	
	65					70					75					80	
	gat	gga	gat	act	aac	tac	aat	ggg	aag	ttc	aag	ggc	aag	gcc	aca	ctg	288
	Asp	Gly	Asp	Thr	Asn	Tyr	Asn	Gly	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	
25					85					90					95		
	act	gca	gac	aaa	tcc	tcc	agc	aca	gcc	tac	atg	caa	ctc	agc	agc	ctg	336
	Thr	Ala	Asp	Lys	Ser	Ser	Ser	Thr	Ala	Tyr	Met	Gln	Leu	Ser	Ser	Leu	
				100					105					110			
30																	
	aca	tct	gag	gac	tct	gcg	gtc	tac	ttc	tgt	gca	aga	gcg	agg	aaa	act	384
	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Phe	Cys	Ala	Arg	Ala	Arg	Lys	Thr	
			115					120					125				
35	tcc	tgg	ttt	gct	tac	tgg	ggc	caa	ggg	act	ctg	gtc	act	gtc	tct	gcg	432
	Ser	Trp	Phe	Ala	Tyr	Trp	Gly	GIn	Gly	Thr	Leu	Val	Thr	Val	Ser	Ala	

130 135 140

<210> 159

5 <211> 144

<212> PRT

<213> Mus musculus

<400> 159

15

30

10 Met Val Leu Ala Ser Ser Thr Thr Ser IIe His Thr Met Leu Leu Leu 1 5 10 15

Leu Leu Met Leu Ala Gin Pro Ala Met Ala Gin Val Gin Leu Gin Gin 20 25 30

Ser Gly Pro Glu Leu Val Lys Pro Gly Ala Ser Val Lys IIe Ser Cys 35 40 45

Lys Ala Ser Gly Tyr Ala Phe Ser Ser Ser Trp Met Asn Trp Met Lys
20 50 55 60

Gin Arg Pro Gly Lys Gly Leu Glu Trp lie Gly Arg lie Tyr Pro Gly
65 70 75 80

25 Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu 85 90 95

Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu 100 105 110

Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Ala Arg Lys Thr 115 120 125

Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala 35 130 135 140

	<210)>	160														
	<21	1> :	345														
	<212	2> 1	DNA							•							
5	<213	3> 1	Mus r	nusci	ulus												
	<220)>															
	<22	1> (CDS														
	<22 2	2>	(1)	(34	5)												
10	<223	3>															
		-															
	<400)>	160														
	gac	att	gtg	ttg	aca	cag	tct	caa	aaa	ttc	atg	tcc	aca	tca	gta	gga	48
	Asp	He	Val	Leu	Thr	Gln	Ser	Gln	Lys	Phe	Met	Ser	Thr	Ser	Val	Gly	
15	1				5					10					15		
	gac	agg	gtc	agc	atc	agc	tgc	aag	gcc	agt	cag	aat	gtg	ggt	aat	att	96
	Asp	Arg	Val	Ser	He	Ser	Cys	Lys	Ala	Ser	Gln	Asn	Val	Gly	Asn	lle	
				20					25					30			
20																	
	ata	gcc	tgg	tat	caa	cag	aaa	cca	ggg	caa	tct	cct	aaa	gca	ctg	att	144
	He	Ala	Trp	Tyr	Gin	Gln	Lys	Pro	Gly	GIn	Ser	Pro	Lys	Ala	Leu	lle	
			35					40					45				
25	tac	ttg	gca	tcc	tac	cgg	tac	agt	gga	gtc	cct	gat	cgc	ttc	aca	ggc	192
	Tyr	Leu	Ala	Ser	Tyr	Arg	Tyr	Ser	Gly	Val	Pro	Asp	Arg	Phe	Thr	Gly .	
		50					55					60					
	agt	gga	tct	ggg	aca	gat	ttc	act	ctc	acc	att	agt	aat	gtg	cag	tct	240
30	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	He	Ser	Asn	Val	Gln	Ser	
	65					70					75					80	
	gaa	gac	ttg	gca	gag	tat	ttc	tgt	cag	caa	tat	agc	agc	tct	ccg	ctc	288
	Glu	Asp	Leu	Ala	Glu	Tyr	Phe	Cys	Gln	GIn	Tyr	Ser	Ser	Ser	Pro	Leu	
35					85					90					95		

acg ttc ggt gct ggg acc aag ctg gaa ata aag gac tac aag gat gac Thr Phe Gly Ala Gly Thr Lys Leu Glu lie Lys Asp Tyr Lys Asp Asp gac gat aag Asp Asp Lys <210> 161 <211> 115 <212> PRT <213> Mus musculus <400> 161 Asp lie Val Leu Thr Gin Ser Gin Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Ile Ser Cys Lys Ala Ser Gin Asn Val Gly Asn Ile lle Ala Trp Tyr Gin Gin Lys Pro Giy Gin Ser Pro Lys Ala Leu Ile Tyr Leu Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Ser Ser Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu IIe Lys Asp Tyr Lys Asp Asp

Asp Asp Lys

115

5 <210> 162

<211> 116

<212> PRT

<213> Mus musculus

10 <400> 162

Asp Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin
1 5 10 15

Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser lle Thr Ser Asp 15 20 25 30

Tyr Ala Trp Ser Trp lie Arg Gin Leu Pro Gly Asn Lys Leu Glu Trp 35 40 45

20 Met Gly Tyr lle Thr Tyr Ser Gly Tyr Ser lle Tyr Asn Pro Ser Leu 50 55 60

Lys Ser Arg IIe Ser IIe Ser Arg Asp Thr Ser Lys Asn Gin Leu Phe 65 70 75 80

Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95

Val Gly Gly Tyr Asp Asn Met Asp Tyr Trp Gly Gln Gly Thr Ser Val 30 100 105 110

Thr Val Ser Ser 115

35

25

<210> 163

<211> 108

<212> PRT

<213> Mus musculus

5 <400> 163

Gin lie Val Leu Thr Gin Ser Pro Ala lie Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Leu Thr Cys Ser Ala Ser Ser Ser Val Ser Ser Ser 10 25 30

His Leu Tyr Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Lys Leu Trp
35 40 45

15 | Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser 50 | 55 | 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr lie Ser Asn Met Glu 65 70 75 80

Thr Glu Asp Ala Ala Ser Tyr Phe Cys His Gln Trp Ser Ser Tyr Pro
85 90 95

Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu IIe Lys
25 100 105

<210> 164

<211> 1924

30 <212> DNA

20

<213> Macaca fascicularis

<220>

<221> CDS

35 <222> (11).. (1918)

<223>

	<400>	164														
	gaattcc	acc a	atg o	ccc f	tcc 1	tgg (gcc	ctc	ttc	atg	gtc	acc ·	tcc	tgc (ctc	49
		N	let f	Pro S	Ser	Trp /	Ala	Leu	Phe I	Met	Val	Thr	Ser (Cys I	Leu	
5		1				į	5					10				
	ctc ctg	gcc	cct	caa	aac	ctg	gcc	caa	gtc	agc	agc	caa	gat	gtc	tcc	97
	Leu Leu	Ala	Pro	GIn	Asn	Leu	Ala	Gln	Val	Ser	Ser	GIn	Asp	Val	Ser	
	15					20					25					
10																
	ttg ctg	gcc	tcg	gac	tca	gag	ccc	ctg	aag	tgt	ttc	tcc	cga	aca	ttt	145
	Leu Leu	Ala	Ser	Asp	Ser	Glu	Pro	Leu	Lys	Cys	Phe	Ser	Arg	Thr	Phe	
	30				35					40					45	
15	gag gac	ctc	act	tgc	ttc	tgg	gat	gag	gaa	gag	gca	gca	CCC	agt	ggg	193
	Glu Asp	Leu	Thr	Cys	Phe	Trp	Asp	Glu	Glu	Glu	Ala	Ala	Pro	Ser	Gly	
				50					55					60		
	aca tac	cag	ctg	ctg	tat	gcc	tac	ccg	ggg	gag	aag	ccc	cgt	gcc	tgc	241
20	Thr Tyr	GIn	Leu	Leu	Tyr	Ala	Tyr	Pro	Gly	Glu	Lys	Pro	Arg	Ala	Cys	
			65					70					75			
	ccc ctg	agt	tct	cag	agc	gtg	ccc	cgc	ttt	gga	acc	cga	tac	gtg	tgc	289
	Pro Leu	Ser	Ser	Gln	Ser	Val	Pro	Arg	Phe	Gly	Thr	Arg	Tyr	Val	Cys	
25		80					85					90				
	cag ttt	cca	gcc	cag	gaa	gaa	gtg	cgt	ctc	ttc	tct	ccg	ctg	cac	ctc	337
	Gin Phe	Pro	Ala	Gln	Glu	Glu	Val	Arg	Leu	Phe	Ser	Pro	Leu	His	Leu	
	95					100					105					
30																
	tgg gtg	aag	aat	gtg	ttc	cta	aac	cag	act	cag	att	cag	cga	gtc	ctc	385
	Trp Val	Lys	Asn	Val	Phe	Leu	Asn	GIn	Thr	Gln	He	Gln	Arg	Val	Leu	
	110				115					120					125	
35	ttt gtg	gac	agt	gta	ggc	ctg	ccg	gct	ccc	ccc	agt	atc	atc	aag	gcc	433
	Phe Val	Asp	Ser	Val	Gly	Leu	Pro	Ala	Pro	Pro	Ser	He	He	Lys	Ala	

					130					135					140		
	atg	ggt	ggg	agc	cag	cca	ggg	gaa	ctt	cag	atc	agc	tgg	gag	gcc	cca	481
	Met	Gly	Gly	Ser	GIn	Pro	Gly	Glu	Leu	Gln	He	Ser	Trp	Glu	Ala	Pro	
5		-	•	145			·		150				·	155			
									,,,,								
	gct	cca	ตลล	atc	aot	σat	ttc	ctø	agg	tac	σαα	ctc	cac	tat	aac	CCC	529
																	323
	nia	FIU		116	Sei	ASP	FIIE		Arg	ıyı	uiu	Leu		ıyı	uly	PTO	
10	•		160					165					170				
10																	
	aaa	gat	ctc	aag	aac	tcc	act	ggt	CCC	acg	gtc	ata	cag	ttg	atc	gcc	577
	Lys	Asp	Leu	Lys	Asn	Ser	Thr	Gly	Pro	Thr	Val	He	Gln	Leu	He	Ala	
		175					180					185					
15	aca	gaa	acc	tgc	tgc	cct	gct	ctg	cag	agg	cca	cac	tca	gcc	tct	gct	625
	Thr	Glu	Thr	Cys	Cys	Pro	Ala	Leu	Gln	Arg	Pro	His	Ser	Ala	Ser	Ala	
	190					195					200					205	
	ctg	gac	cag	tct	cca	tgt	gct	cag	CCC	aca	atg	CCC	tgg	caa	gat	gga	673
20									Pro								
_ •					210	-,-				215					220	,	
	cca	220	can	200	too	cca	act	ana	gaa	act	tca	σct	cta	202	mca.	ata	721
								_		_		_	_		_		721
25	FIU	Lys	um		361	FIO	1111	AIR	Glu	міа	Sei	на	Leu		міа	Vai	
25				225					230					235			
																_	
									ctc								769
	Gly	Gly	Ser	Cys	Leu	He	Ser	Gly	Leu	Gln	Pro	Gly	Asn	Ser	Tyr	Trp	
			240					245					250				
30																	
	ctg	cag	ctg	cgc	agc	gaa	cct	gat	ggg	atc	tcc	ctc	ggt	ggc	tcc	tgg	817
	Leu	Gln	Leu	Arg	Ser	Glu	Pro	Asp	Gly	He	Ser	Leu	Gly	Gly	Ser	Trp	
		255					260					265					
35	gga	tcc	tgg	tcc	ctc	cct	gtg	act	gtg	gac	ctg	cct	gga	gat	gca	gtg	865
									Val						_		
	•		•							•			•				

	270			-		275					280					285	
													aat				913
_	Ala	lle	Gly	Leu		Cys	Phe	Thr	Leu		Leu	Lys	Asn	Val		Cys	
5					290					295					300		
	caa.	+~~	can		a a a	asc.	cat	act.	agt.	too	000	aat	ttc	tto	tac	020	961
								_	-				Phe				901
	u i i i	11,5	4111	305	uiu	ЛОР			310	001	u i i i	uly	1 110	315	',	1110	
10																	
	agc	agg	gca	cgg	tgc	tgc	CCC	aga	gac	agg	tac	CCC	atc	tgg	gag	gac	1009
	Ser	Arg	Ala	Arg	Cys	Cys	Pro	Arg	Asp	Arg	Tyr	Pro	He	Trp	Glu	Asp	
			320					325					330				
15	tgt	gaa	gag	gaa	gag	aaa	aca	aat	cca	gga	tta	cag	acc	cca	cag	ttc	1057
	Cys	Glu	Glu	Glu	Glu	Lys	Thr	Asn	Pro	Gly	Leu	Gln	Thr	Pro	Gln	Phe	
		335					340					345					
•													att				1105
20		Arg	Cys	His	Phe		Ser	Arg	Asn	Asp		Val	lle	His	lle		
	350					355					360					365	
	ata	gag	ata	200	202	acc.	cta	aat	act	α + +	C2C	ant	tac	cta	aac	too	1153
													Tyr				1100
25				••••	370	,,,, <u>u</u>	Lou	41,	,,,u	375	0	001	.,.	LUG	380	001	
	cct	ttc	tgg	atc	cac	cag	gct	gtg	cgc	ctc	CCC	acc	cca	aac	ttg	cac	1201
	Pro	Phe	Trp	He	His	Gln	Ala	Val	Arg	Leu	Pro	Thr	Pro	Asn	Leu	His	
				385					390					395			
30																	
	tgg	agg	gag	atc	tcc	agc	ggg	cat	ctg	gaa	ttg	gag	tgg	cag	cac	cca	1249
	Trp	Arg		He	Ser	Ser	Gly	His	Leu	Glu	Leu	Glu	Trp	Gin	His	Pro	
	-		400					405					410				
25							1007
35													cga				1297
	ser	ser	ırp	AIA	АІА	uin	นเน	ınr	СУS	ıyr	uin	Leu	Arg	ıyr	Ihr	Gly	

		415			420					425				
5 .	_			_	 _		_		ccg Pro 440			_		1345
						_			cgc Arg				_	1393
10					•				ggt Gly					1441
15									gag Glu					1489
20								•	ctc Leu					1537
25									cac His 520					1585
20							_	_	cac His				_	1633
30						_	_		ccc Pro					1681
35					 _		_		ctt Leu					1729

	560)		565		570	
5	tcc tca gag Ser Ser Glu 575				Cys Ser S		
J	gac tac cga	aga ttg		tot tao			ctg tct 1825
	Asp Tyr Arg					_	_
10							
	gtg tgc cca Val Cys Pro						
15	gcc aac cat Ala Asn His						tga 1918
		625		630		635	
20	gtcgac						1924
	<210> 165 <211> 635 <212> PRT						
25		ca fascio	cularis				
	<400> 165						
30	Met Pro Ser	Trp Ala 5	Leu Phe	Met Val	Thr Ser C	Sys Leu Leu	Leu Ala 15
30	Pro Gln Asn	Leu Ala 20	Gin Val	Ser Ser 25	Gin Asp V	'al Ser Leu 30	Leu Ala
35	Ser Asp Ser	Glu Pro		Cys Phe 40	Ser Arg T	hr Phe Glu 45	Asp Leu

	Thr	Cys 50	Phe	Trp	Asp	Glu	Glu 55	Glu	Ala	Ala	Pro	Ser 60	Gly	Thr	Tyr	Gln
5	Leu 65	Leu	Tyr	Ala	Tyr	Pro 70	Gly	Glu	Lys	Pro	Arg 75	Ala	Cys	Pro	Leu	Ser 80
	Ser	Gln	Ser	Val	Pro 85	Arg	Phe	Gly	Thr	Arg 90	Tyr	Val	Cys	Gin	Phe 95	Pro
10	Ala	Gln	Glu	Glu 100	Val	Arg	Leu	Phe	Ser 105	Pro	Leu	His	Leu	Trp 110	Val	Lys
15	Asn	Val	Phe 115	Leu	Asn	Gln	Thr	GIn 120	lle	Gln	Arg	Val	Leu 125	Phe	Val	Asp
13	Ser	Val 130	Gly	Leu	Pro	Ala	Pro 135	Pro	Ser	lle	He	Lys 140	Ala	Met	Gly	Gly
20	Ser 145	Gln	Pro	Gly	Glu	Leu 150	Gln	lle	Ser	Trp	Glu 155	Ala	Pro	Ala	Pro	Glu 160
	lle	Ser	Asp	Phe	Leu 165	Arg	Tyr	Glu	Leu	Arg 170	Tyr	Gly	Pro	Lys	Asp 175	Leu
25	Lys	Asn	Ser	Thr 180	Gly	Pro	Thr	Val		GIn		lle	Ala	Thr 190	Glu	Thr
30	Cys	Cys	Pro 195	Ala	Leu	GIn	Arg	Pro 200	His	Ser	Ala	Ser	Ala 205	Leu	Asp	Gln
30	Ser	Pro 210	Cys	Ala	Gln	Pro	Thr 215	Met	Pro	Trp	GIn	Asp 220	Gly	Pro	Lys	GIn
35	Thr 225	Ser	Pro	Thr	Arg	G1u 230	Ala	Ser	Ala	Leu	Thr 235	Ala	Vai	Gly	Gly	Ser 240

	Cys	Leu	lle	Ser	Gly 245	Leu	GIn	Pro	Gly	Asn 250	Ser	Tyr	Trp	Leu	GIn 255	Leu
5	Arg	Ser	Glu	Pro 260	Asp	Gly	He	Ser	Leu 265	Gly	Gly	Ser	Trp	Gly 270	Ser	Trp
	Ser	Leu	Pro 275	Val	Thr	Val	Asp	Leu 280	Pro	Gly	Asp	Ala	Va I 285	Ala	lle	Gly
10	Leu	GIn 290	Cys	Phe	Thr	Leu	Asp 295	Leu	Lys	Asn	Val	Thr 300	Cys	Gln	Trp	GIn
15	GIn 305	Glu	Asp	His	Ala	Ser 310	Ser	GIn	Gly	Phe	Phe 315	Tyr	His	Ser	Arg	Ala 320
13	Arg	Cys	Cys	Pro	Arg 325	Asp	Arg	Tyr	Pro	11e 330	Trp	Glu	Asp	Cys	Glu 335	Glu
20	Glu	Glu	Lys	Thr 340	Asn	Pro	Gly	Leu	GIn 345	Thr	Pro	Gin	Phe	Ser 350	Arg	Cys
	His	Phe	Lys 355	Ser	Arg	Asn	Asp	Ser 360	Val	lle	His	lle	Leu 365	Val	Glu	Val
25	Thr	Thr 370		Leu	Gly	Ala		His		Tyr	Leu	Gly 380	Ser	Pro	Phe	Trp
20	11e 385	His	GIn	Ala	Val	Arg 390	Leu	Pro	Thr	Pro	Asn 395	Leu	His	Trp	Arg	Glu 400
30	lle	Ser	Ser	Gly	His 405	Leu	Glu	Leu	Glu	Trp 410	GIn	His	Pro	Ser	Ser 415	Trp
35	Ala	Ala	Gln	Glu 420	Thr	Cys	Tyr	Gln	Leu 425	Arg	Tyr	Thr	Gly	G1u 430	Gly	His

	GIN	ASP	435	Lys	vai	Leu	GIU	440	Pro	Leu	ч	АІА	445	ч	ч	ınr
5	Leu	Glu 450	Leu	Arg	Pro	Arg	Ser 455	Arg	Tyr	Arg	Leu	GIn 460	Leu	Arg	Ala	Arg
	Leu 465	Asn	Gly	Pro	Thr	Tyr 470	Gln	Gly	Pro	Trp	Ser 475	Ser	Trp	Ser	Asp	Pro 480
10	Ala	Arg	Val	Glu	Thr 485	Ala	Thr	Glu	Thr	Ala 490	Trp	lle	Ser	Leu	Va I 495	Thr
1.5	Ala	Leu	Leu	Leu 500	Val	Leu	Gly	Leu	Ser 505	Ala	Val	Leu	Gly	Leu 510	Leu	Leu
15	Leu	Arg	Trp 515	Gln	Phe	Pro	Ala	His 520	Tyr	Arg	Arg	Leu	Arg 525	His	Ala	Leu
20	Trp	Pro 530	Ser	Leu	Pro	Asp	Leu 535	His	Arg	Val	Leu	Gly 540	Gln	Tyr	Leu	Arg
	Asp 545	Thr	Ala	Ala	Leu	Ser 550	Pro	Pro	Lys	Ala	Thr 555	Val	Ser	Asp	Thr	Cys 560
25	Glu	Glu	Val	Glu	Pro 565	Ser	Leu	Leu	Glu	11e 570	Leu	Pro	Lys	Ser	Ser 575	Glu
30	Arg	Thr	Pro	Leu 580	Pro	Leu	Cys	Ser	Ser 585	GIn	Ser	GIn	Met	Asp 590	Tyr	Arg
30	Arg	Leu	GIn 595	Pro	Ser	Cys	Leu	Gly 600	Thr	Met	Pro	Leu	Ser 605	Val	Cys	Pro
35	Pro	Met 610	Ala	Glu	Ser	Gly	Ser 615	Cys	Cys	Thr	Thr	His 620	lle	Ala	Asn	His

	Ser Ty	r Leu Pro Leu Ser Tyr Trp Gin Gin Pro	
	625	630 635	
5	<210>	166	
	<211>	24	
	<212>	DNA	
	<213>	Artificial	
10	<220>		
	<223>	an artificially synthesized sequence	
	<400>		
1.5	cagggg	ccag tggatagact gatg	24
15			
	<210>	167	
	<210>	167	
	<211>	DNA	
20		Artificial	
20	\2107	ALLITICIAI	
	<220>		
		an artificially synthesized sequence	
	,,	an an environment of mention to a control	
25	<400>	167	
	gctcac	etgga tggtgggaag atg	23
	<210>	168	
30	<211>	30	
•	<212>	DNA	
	<213>	Artificial	
	<220>		
35	<223>	an artificially synthesized primer sequence	

```
<400> 168
     tagaattcca ccatggaatg gcctttgatc
                                                                          30
 5
     <210> 169
     <211> 56
     <212> DNA
     <213> Artificial
10
     <220>
     <223> an artificially synthesized primer sequence
     <400> 169
     agcctgagtc atcacaatat ccgatccgcc tccacctgca gagacagtga ccagag
                                                                          56
15
     <210> 170
     <211> 56
     <212> DNA
     <213> Artificial
20
     <220>
     <223> an artificially synthesized primer sequence
25
     <400> 170
     actotggtca ctgtctctgc aggtggaggc ggatcggata ttgtgatgac tcaggc
                                                                          56
     <210> 171
30
     <211> 60
     <212> DNA
     <213> Artificial
     <220>
35
     <223> an artificially synthesized primer sequence
```

```
<400> 171
     attgcggccg cttatcactt atcgtcgtca tccttgtagt cttttatttc cagcttggtc
                                                                         60
     <210> 172
     <211> 8
     <212> PRT
     <213> Artificial
10
     <220>
     <223> an artificially synthesized FLAG tag sequence
     <400> 172
     Asp Tyr Lys Asp Asp Asp Lys
15
     <210> 173
     <211> 85
20
     <212> DNA
     <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
25
     <400> 173
     tagaattcca ccatggaatg gcctttgatc tttctcttcc tcctgtcagg aactgcaggt
                                                                         60
                                                                         85
     gtccactccc aggttcagct gcagc
30
     <210> 174
     <211> 82
     <212> DNA
35
     <213> Artificial
```

	<220>		
	<223>	an artificially synthesized primer sequence	
	<400>		
5	tggtca	ctgt ctctgcaggt ggtggtggtt cgggtggtgg tggttcgggt ggtggcggat	60
	cggata	ittgt gatgactcag gc	82
10	<210>	175	
	⟨211⟩	82	
	<212>	DNA	
	<213>	Artificial	
15	<220>		
13		an artificially synthesized primer sequence	
	,	an an arrival arrival arrival primiting confidence	
	<400>	175	
	tgagto	atca caatateega teegeeacea eeegaaceae caccaceega accaccacea	60
20			
	cctgca	gaga cagtgaccag ag	82
	<210>	176	
25	<211>	25	
	<212>	DNA	
	<213>	Artificial	
	<220>		
30		an artificially synthesized primer sequence	
	<400>	176	
	caggtt	cago tgcagcagto tggac	25
35			
	<210>	177	

```
<211> 81
     <212> DNA
     <213> Artificial
 5
     <220>
     <223> an artificially synthesized primer sequence
     <400> 177
     gctgcagctg aacctgcgat ccaccgcctc ccgaaccacc accacccgat ccaccacctc
                                                                          60
10
     cttttatttc cagcttggtc c
                                                                          81
     <210> 178
15
     <211> 38
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 178
                                                                          38
     gcccagccgg ccatggcgga kgtrmagctt caggagtc
25
     <210> 179
     <211> 38
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 179
35
                                                                          38
     gcccagccgg ccatggcgga ggtbcagctb cagcagtc
```

```
<210> 180
     <211> 38
     <212> DNA
 5
     <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 180
                                                                          38
     gcccagccgg ccatggcgca ggtgcagctg aagsastc
     <210> 181
     <211> 38
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 181
                                                                          38
     gcccagccgg ccatggcgga ggtccarctg caacartc
25
     <210> 182
     <211> 38
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 182
35
                                                                          38
     gcccagccgg ccatggcgca ggtycagctb cagcartc
```

```
<210> 183
     <211> 38
     <212> DNA
 5
     <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 183
                                                                         38
     gcccagccgg ccatggcgca ggtycarctg cagcagtc
     <210> 184
     <211> 38
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 184
                                                                         38
     gcccagccgg ccatggcgca ggtccacgtg aagcagtc
25
     <210> 185
     <211> 38
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 185
35
     gcccagccgg ccatggcgga ggtgaasstg gtggaatc
                                                                         38
```

```
<210> 186
     <211> 38
     <212> DNA
     <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 186
                                                                          38
     gcccagccgg ccatggcgga vgtgawgytg gtggagtc
     <210> 187
     <211> 38
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 187
                                                                          38
     gcccagccgg ccatggcgga ggtgcagskg gtggagtc
25
     <210> 188
     <211> 38
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 188
35
     gcccagccgg ccatggcgga kgtgcamctg gtggagtc
                                                                          38
```

```
<210> 189
     <211> 38
     <212> DNA
 5
     <213> Artificial
     <220>
      <223> an artificially synthesized primer sequence
10
     <400> 189
     gcccagccgg ccatggcgga ggtgaagctg atggartc
                                                                           38
     <210> 190
     <211> 38
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 190
                                                                           38
     gcccagccgg ccatggcgga ggtgcarctt gttgagtc
25
     <210> 191
     <211> 38
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 191
35
     gcccagccgg ccatggcgga rgtraagctt ctcgagtc
                                                                          38
```

```
<210> 192
     <211> 38
     <212> DNA
 5
     <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 192
                                                                          38
     gcccagccgg ccatggcgga agtgaarstt gaggagtc
     <210> 193
     <211> 40
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 193
                                                                          40
     gcccagccgg ccatggcgca ggttactctr aaagwgtstg
25
     <210> 194
     <211> 38
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 194
35
                                                                          38
     gcccagccgg ccatggcgca ggtccaactv cagcarcc
```

```
<210> 195
     <211> 38
     <212> DNA
     <213> Artificial
 5
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 195
                                                                          38
     gcccagccgg ccatggcgga tgtgaacttg gaagtgtc
     <210> 196
     <211> 38
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 196
                                                                          38
     gcccagccgg ccatggcgga ggtgaaggtc atcgagtc
25
     <210> 197
     <211> 36
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 197
35
     ggagccgccg ccgcccgagg aaacggtgac cgtggt
                                                                          36
```

```
<210> 198
      <211> 36
     <212> DNA
 5
     <213> Artificial
      <220>
      <223> an artificially synthesized primer sequence
10
     <400> 198
     ggagccgccg ccgcccgagg agactgtgag agtggt
                                                                           36
     <210> 199
15
     <211> 36
     <212> DNA
      <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 199
                                                                           36
      ggagccgccg ccgcccgcag agacagtgac cagagt
25
     <210> 200
     <211> 36
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 200
35
                                                                           36
     ggagccgccg ccgcccgagg agacggtgac tgaggt
```

```
<210> 201
     <211> 35
     <212> DNA
     <213> Artificial
 5
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 201
                                                                           35
     ggcggcggcg gctccgayat ccagctgact cagcc
     <210> 202
     <211> 35
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 202
                                                                           35
     ggcggcggcg gctccgayat tgttctcwcc cagtc
25
     <210> 203
     <211> 35
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 203
                                                                          35
35
     ggcggcggcg gctccgayat tgtgmtmact cagtc
```

```
<210> 204
     <211> 35
     <212> DNA
 5
     <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 204
                                                                          35
     ggcggcggcg gctccgayat tgtgytraca cagtc
     <210> 205
     <211> 35
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 205
                                                                          35
     ggcggcggcg gctccgayat tgtratgacm cagtc
25
     <210> 206
     <211> 35
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 206
35
                                                                          35
     ggcggcggcg gctccgayat tmagatramc cagtc
```

```
<210> 207
     <211> 35
     <212> DNA
     <213> Artificial
 5
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 207
                                                                          35
     ggcggcggcg gctccgayat tcagatgayd cagtc
     <210> 208
15
     <211> 35
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 208
                                                                          35
     ggcggcggcg gctccgayat ycagatgaca cagac
25
     <210> 209
     <211> 35
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 209
35
     ggcggcggcg gctccgayat tgttctcawc cagtc
                                                                          35
```

```
<210> 210
     <211> 35
     <212> DNA
    <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
    <400> 210
                                                                         35
     ggcggcggcg gctccgayat tgwgctsacc caatc
     <210> 211
     <211> 35
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 211
                                                                         35
     ggcggcggcg gctccgayat tstratgacc cartc
25
     <210> 212
     <211> 35
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 212
35
                                                                         35
     ggcggcggcg gctccgayrt tktgatgacc carac
```

```
<210> 213
     <211> 35
     <212> DNA
     <213> Artificial
 5
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 213
                                                                          35
     ggcggcggcg gctccgayat tgtgatgacb cagkc
     <210> 214
     <211> 35
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 214
                                                                          35
     ggcggcggcg gctccgayat tgtgataacy cagga
25
     <210> 215
     <211> 35
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 215
35
     ggcggcggcg gctccgayat tgtgatgacc cagwt
                                                                          35
```

```
<210> 216
     <211> 35
     <212> DNA
 5 <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
    <400> 216
                                                                         35
     ggcggcggcg gctccgayat tgtgatgaca caacc
     <210> 217
     <211> 35
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 217
                                                                         35
     ggcggcggcg gctccgayat tttgctgact cagtc
25
     <210> 218
     <211> 38
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 218
35
                                                                         38
     ggcggcggcg gctccgatgc tgttgtgact caggaatc
```

```
<210> 219
     <211> 36
     <212> DNA
 5
     <213> Artificial
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 219
                                                                          36
     ggaattcggc ccccgaggcc ttgatttcca gcttgg
     <210> 220
     <211> 36
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 220
                                                                          36
     ggaattcggc ccccgaggcc tttatttcca gcttgg
25
     <210> 221
     <211> 36
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized primer sequence
     <400> 221
35
                                                                          36
     ggaattcggc ccccgaggcc tttatttcca actttg
```

```
<210> 222
     <211> 36
     <212> DNA
     <213> Artificial
 5
     <220>
     <223> an artificially synthesized primer sequence
10
     <400> 222
                                                                          36
     ggaattcggc ccccgaggcc ttcagctcca gcttgg
     <210> 223
     <211> 39
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized primer sequence
     <400> 223
                                                                          39
     ggaattcggc ccccgaggcc cctaggacag tcagtttgg
25
     <210> 224
     <211> 27
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized sequence
     <400> 224
                                                                          27
35
     ttactcgcgg cccagccggc catggcg
```

```
<210> 225
     <211> 17
     <212> DNA
     <213> Artificial
     <220>
     <223> an artificially synthesized sequence
10
     <400> 225
     ggaattcggc ccccgag
                                                                          17
     <210> 226
     <211> 20
15
     <212> DNA
     <213> Artificial
     <220>
20
     <223> an artificially synthesized sequence
     <400> 226
                                                                          20
     tcacttacag gctctctact
25
     <210> 227
     <211> 20
     <212> DNA
     <213> Artificial
30
     <220>
     <223> an artificially synthesized sequence
     <400> 227
35
     caggtggggt ctttcattcc
                                                                          20
```

	<210> 228	
	<211> 354	
	<212> DNA	
5	<213> Homo sapiens	
	<400> 228	
	caggtgcagc tggtgcagtc tggacctgag gtgaagaagc ctggggcctc agtgaaggtc	60
10	tcctgcaagg cttctggata caccttcacc aactcctgga tgaactgggt gaggcagagg	120
	cctggaaagg gtcttgagtg gatgggacgg atttatcctg gagatggaga aactatctac	180
15	aatgggaaat tcagggtcag agtcacgatt accgcggacg aatccacgag cacagcctac	240
	atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc gagaggctat	300
	gatgattact cgtttgctta ctggggccag ggaaccacgg tcaccgtctc ttca	354
20		
	<210> 229	
	<211> 118	
	<212> PRT	
25	<213> Homo sapiens	
	<400> 229	
	Gin Val Gin Leu Val Gin Ser Giy Pro Giu Val Lys Lys Pro Giy Ala	
	1 5 10 15	
30	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Ser 20 25 30	
	Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Met 35 40 45	
35		
	Gly Arg lle Tyr Pro Gly Asp Gly Glu Thr lle Tyr Asn Gly Lys Phe	

50 55 60

Arg Val Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr

65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

85 90 95

Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr

100 105 110

Thr Val Thr Val Ser Ser 115

15 <210> 230

5

10

20

<211> 30

<212> PRT

<213> Homo sapiens

<400> 230

Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys Pro Gly Ala
1 5 10 15

25 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr 20 25 30

<210> 231

30 <211> 5

<212> PRT

<213> Homo sapiens

<400> 231

35 Asn Ser Trp Met Asn

```
<210> 232
      <211> 14
 5 · <212> PRT
      <213> Homo sapiens
      <400> 232
      Trp Val Arg Gin Arg Pro Gly Lys Gly Leu Glu Trp Met Gly
10
                      5
                                          10
      <210> 233
      <211> 17
15
      <212> PRT
      <213> Homo sapiens
      <400> 233
     Arg lie Tyr Pro Gly Asp Gly Glu Thr lie Tyr Asn Gly Lys Phe Arg
20
      1
                     5
                                          10
                                                              15
      Val
25
     <210> 234
      <211> 32
     <212> PRT
     <213> Homo sapiens
30
     <400> 234
     Arg Val Thr lle Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu
                     5
                                         10
                                                              15
     Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
35
                 20
                                     25
                                                          30
```

```
<210> 235
     <211> 9
 5
     <212> PRT
     <213> Homo sapiens
     <400> 235
     Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr
10
                     5
     1
     <210> 236
     <211> 11
15
     <212> PRT
     <213> Homo sapiens
     <400> 236
     Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
20
     1
                     5
                                         10
     <210> 237
     <211> 336
25
     <212> DNA
     <213> Homo sapiens
     <400> 237
     gatattgtga tgactcagtc tgcactctcc ctgcccgtca cccctggaga gccggcctcc
                                                                           60
30
     atotoctgca ggtotagtaa gagtotoctg catagtaatg gcaacactta cttgtattgg
                                                                          120
     ttccagcaga agccagggca gtctccacag ctcctgatct atcggatgtc caaccttgcc
                                                                          180
35
                                                                          240
     tcaggggtcc ctgacaggtt cagtggcagt ggatcaggca cagcttttac actgaaaatc
```

agcagagtgg aggctgagga tgttggggtt tattactgca tgcaacatat agaatatcct tttacgttcg gccaagggac caaactggaa atcaaa <210> 238 <211> 112 <212> PRT <213> Homo sapiens <400> 238 Asp lie Val Met Thr Gin Ser Ala Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser lle Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Gin Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His lle Glu Tyr Pro Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu lle Lys <210> 239

<211> 23 <212> PRT

```
<213> Homo sapiens
     <400> 239
     Asp lie Val Met Thr Gin Ser Ala Leu Ser Leu Pro Val Thr Pro Gly
                     5
 5
     1
                                         10
                                                             15
     Glu Pro Ala Ser Ile Ser Cys
                 20
10
     <210> 240
     <211> 16
     <212> PRT
     <213> Homo sapiens
15
     <400> 240
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
     1
                     5
                                         10
                                                             15
20
     <210> 241
     <211> 15
     <212> PRT
     <213> Homo sapiens
25
     <400> 241
     Trp Phe Gin Gin Lys Pro Giy Gin Ser Pro Gin Leu Leu Ile Tyr
                     5
                                                             15
                                         10
30
     <210> 242
     <211> 7
     <212> PRT
     <213> Homo sapiens
35
     <400> 242
```

15

30

```
Arg Met Ser Asn Leu Ala Ser
                     5
 5
     <210> 243
     <211> 32
     <212> PRT
     <213> Homo sapiens
10
     <400> 243
     Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr
                     5
     1
                                         10
     Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys
15
                 20
                                     25
     <210> 244
     <211> 9
20
     <212> PRT
     <213> Homo sapiens
     <400> 244
     Met Gln His Ile Glu Tyr Pro Phe Thr
25
                     5
     1
     <210> 245
     <211> 10
30
     <212> PRT
     <213> Homo sapiens
```

Phe Gly Gin Gly Thr Lys Leu Glu IIe Lys

10

5

<400> 245

35

<210> 246

<211> 1924

<212> DNA

5 <213> Homo sapiens

<400> 246

gaattccacc atgccctcct gggccctctt catggtcacc tcctgcctcc tcctggcccc 60 10 tcaaaacctg gcccaagtca gcagccaaga tgtctccttg ctggcatcag actcagagcc 120 cctgaagtgt ttctcccgaa catttgagga cctcacttgc ttctgggatg aggaagaggc 180 240 agogoccagt gggacataco agotgotgta tgcctaccog cgggagaago cccgtgottg 15 ccccctgagt tcccagagca tgccccactt tggaacccga tacgtgtgcc agtttccaga 300 360 ccaggaggaa gtgcgtctct tctttccgct gcacctctgg gtgaagaatg tgttcctaaa 20 ccagactogg actcagcgag tcctctttgt ggacagtgta ggcctgccgg ctcccccag 420 tatcatcaag gccatgggtg ggagccagcc aggggaactt cagatcagct gggaggagcc 480 agotocagaa atcagtgatt tootgaggta ogaactoogo tatggococa gagatoccaa 540 25 gaactccact ggtcccacgg tcatacagct gattgccaca gaaacctgct gccctgctct 600 gcagagacct cactcagcct ctgctctgga ccagtctcca tgtgctcagc ccacaatgcc 660 30 720 ctggcaagat ggaccaaagc agacctcccc aagtagagaa gcttcagctc tgacagcaga gggtggaagc tgcctcatct caggactcca gcctggcaac tcctactggc tgcagctgcg 780 cagogaacct gatgggatct coctoggtgg ctcctgggga toctggtccc tocctgtgac 840 35 tgtggacctg cctggagatg cagtggcact tggactgcaa tgctttacct tggacctgaa 900

	gaatgttacc	tgtcaatggc	agcaacagga	ccatgctagc	tcccaaggct	tcttctacca	960
5	cagcagggca	cggtgctgcc	ccagagacag	gtaccccatc	tgggagaact	gcgaagagga	1020
J	agagaaaaca	aatccaggac	tacagacccc	acagttctct	cgctgccact	tcaagtcacg	1080
	aaatgacagc	attattcaca	tccttgtgga	ggtgaccaca	gccccgggta	ctgttcacag	1140
10	ctacctgggc	tcccctttct	ggatccacca	ggctgtgcgc	ctccccaccc	caaacttgca	1200
	ctggagggag	atctccagtg	ggcatctgga	attggagtgg	cagcacccat	cgtcctgggc	1260
15	agcccaagag	acctgttatc	aactccgata	cacaggagaa	ggccatcagg	actggaaggt	1320
13	gctggagccg	cctctcgggg	cccgaggagg	gaccctggag	ctgcgcccgc	gatctcgcta	1380
	ccgtttacag	ctgcgcgcca	ggctcaacgg	cccacctac	caaggtccct	ggagctcgtg	1440
20	gtcggaccca	actagggtgg	agaccgccac	cgagaccgcc	tggatctcct	tggtgaccgc	1500
	tctgcatcta	gtgctgggcc	tcagcgccgt	cctgggcctg	ctgctgctga	ggtggcagtt	1560
25	tcctgcacac	tacaggagac	tgaggcatgc	cctgtggccc	tcacttccag	acctgcaccg	1620
23	ggtcctaggc	cagtacctta	gggacactgc	agccctgagc	ccgcccaagg	ccacagtctc	1680
	agatacctgt	gaagaagtgg	aacccagcct	ccttgaaatc	ctccccaagt	cctcagagag	1740
30	gactcctttg	ccctgtgtt	cctcccaggc	ccagatggac	taccgaagat	tgcagccttc	1800
	ttgcctgggg	accatgcccc	tgtctgtgtg	cccacccatg	gctgagtcag	ggtcctgctg	1860
35	taccacccac	attgccaacc	attcctacct	accactaagc	tattggcagc	agccttgagt	1920
	cgac						1924

	<210>	247														
	⟨211⟩	1924														
5	<212>	DNA														
	<213>	Homo	sap	i ens												
	<220>															
	<221>	CDS														
10	<222>	(11)	(1	918)												
	<223>															•
	<400>	247														
	gaatto															49
15			Met	Pro :	Ser			Leu	Phe I	Met '			Ser	Cys	Leu	
			1				5					10				
	ctc ct	, acc	cct	caa	220	cta	acc	caa	atc	auc	200	.	ast.	ato	too	97
	Leu Le															31
20	15	ı Ala	110	um	AGII	20	ліа	uiii	va i	001	25	uiii	nop	Vai	961	
20	10					20					20					
	ttg ct	g gca	tca	gac	tca	gag	ccc	ctg	aag	tgt	ttc	tcc	cga	aca	ttt	145
	Leu Le															
	30				35					40					45	
25																
	gag ga	ctc	act	tgc	ttc	tgg	gat	gag	gaa	gag	gca	gcg	ccc	agt	ggg	193
	Glu As	Leu	Thr	Cys	Phe	Trp	Asp	Glu	Glu	Glu	Ala	Ala	Pro	Ser	Gly	
				50					55					60		
30	aca ta															241
	Thr Ty	Gln		Leu	Tyr	Ala	Tyr		Arg	Glu	Lys	Pro		Ala	Cys	
			65					70					75			
	ccc ct	r ant	too	cor	200	at a	000	000	+++	aas	200	cas	+20	a+a	tac	289
35	Pro Lei															209
رر	IIO LGI	80	961	uill	961	me L	85	1113	1116	uly	1111	90	ıyı	101	Uyo	
		UU					UJ					30				

	cag	ttt	сса	gac	cag	gag	gaa	gtg	cct	ctc	ttc	ttt	ccg	ctg	cac	ctc	337
	Gln	Phe	Pro	Asp	Gln	Glu	Glu	Val	Pro	Leu	Phe	Phe	Pro	Leu	His	Leu	
		95					100					105					
5																	
	tgg	gtg	aag	aat	gtg	ttc	cta	aac	cag	act	cgg	act	cag	cga	gtc	ctc	385
	Trp	Val	Lys	Asn	Val	Phe	Leu	Asn	Gin	Thr	Arg	Thr	Gln	Arg	Val	Leu	
	110					115					120					125	
10	ttt	gtg	gac	agt	gta	ggc	ctg	ccg	gct	ccc	ccc	agt	atc	atc	aag	gcc	433
	Phe	Val	Asp	Ser	Val	Gly	Leu	Pro	Ala	Pro	Pro	Ser	He	He	Lys	Ala	
				•	130					135					140		
	atg	ggt	ggg	agc	cag	cca	ggg	gaa	ctt	cag	atc	agc	tgg	gag	gag	cca	481
15	Met	Gly	Gly	Ser	Gln	Pro	Gly	Glu	Leu	Gln	lle	Ser	Trp	Glu	Glu	Pro	
				145					150					155			
	gct	сса	gaa	atc	agt	gat	ttc	ctg	agg	tac	gaa	ctc	cgc	tat	ggc	ccc	529
	Ala	Pro	Glu	lle	Ser	Asp	Phe	Leu	Arg	Tyr	Glu	Leu	Arg	Tyr	Gly	Pro	
20			160					165					170				
	aga	gat	ccc	aag	aac	tcc	act	ggt	ccc	acg	gtc	ata	cag	ctg	att	gcc	577
	Arg	Asp	Pro	Lys	Asn	Ser	Thr	Gly	Pro	Thr	Val	lle	Gln	Leu	He	Ala	
		175					180					185					
25																	•
	aca	gaa	acc	tgc	tgc	cct	gct	ctg	cag	aga	cct	cac	tca	gcc	tct	gct	625
	Thr	Glu	Thr	Cys	Cys	Pro	Ala	Leu	Gln	Arg	Pro	His	Ser	Ala	Ser	Ala	
	190					195					200					205	
30 ⁻	ctg	gac	cag	tct	cca	tgt	gct	cag	ccc	aca	atg	ccc	tgg	caa	gat	gga	673
	Leu	Asp	Gln	Ser	Pro	Cys	Ala	Gln	Pro	Thr	Met	Pro	Trp	Gln	Asp	Gly	
					210					215					220		
	cca	aag	cag	acc	tcc	cca	agt	aga	gaa	gct	tca	gct	ctg	aca	gca	gag	721
35	Pro	Lys	GIn	Thr	Ser	Pro	Ser	Arg	Glu	Ala	Ser	Ala	Leu	Thr	Ala	Glu	
				225					230					235			

											cct						769
	GIY	ыу	ser 240	Cys	Leu	HIE	Ser	245	Leu	Gin	Pro	GIY	250	Ser	ıyr	ırp	
5			240					240					230				
3	ctg	cag	ctg	CgC	agc	gaa	cct	gat	ggg	atc	tcc	ctc	ggt	ggC	tcc	tee	817
											Ser						
		255					260					265					
10	gga	tcc	tgg	tcc	ctc	cct	gtg	act	gtg	gac	ctg	cct	gga	gat	gca	gtg	865
	Gly	Ser	Trp	Ser	Leu	Pro	Val	Thr	Val	Asp	Leu	Pro	Gly	Asp	Ala	Val	
	270					275					280					285	
	gca	ctt	gga	ctg	caa	tgc	ttt	acc	ttg	gac	ctg	aag	aat	gtt	acc	tgt	913
15	Ala	Leu	Gly	Leu		Cys	Phe	Thr	Leu		Leu	Lys	Asn	Val		Cys	
					290					295					300		
											caa						961
20	GIN	Irp	GIN		Gin	Asp	HIS	Ala		Ser	Gln	Gly	Phe		lyr	HIS	
20				305					310					315			
	agc	agg	gca	CEE	tøc	tøc	ccc	aga	gac	agg	tac	ccc	atc	too	៤ ៦៤	aac	1009
											Tyr						1005
		6	320	6	0,0	-,-		325	ПОР	, B	.,.		330			7.07.	
25																	
	tgc	gaa	gag	gaa	gag	aaa	aca	aat	cca	gga	cta	cag	acc	cca	cag	ttc	1057
	Cys	Glu	Glu	Glu	Glu	Lys	Thr	Asn	Pro	Gly	Leu	Gln	Thr	Pro	Gln	Phe	
		335					340					345					
30	tct	cgc	tgc	cac	ttc	aag	tca	cga	aat	gac	agc	att	att	cac	atc	ctt	1105
	Ser	Arg	Cys	His	Phe	Lys	Ser	Arg	Asn	Asp	Ser	He	He	His	He	Leu	
	350					355					360					365	
0.5											cac						1153
35	Val	Glu	Val	Thr		Ala	Pro	Gly	Thr		His	Ser	Tyr	Leu		Ser	
					370					375					380		

	cct	ttc	tgg	atc	cac	cag	gct	gtg	cgc	ctc	ccc	acc	cca	aac	ttg	cac	1201
	Pro	Phe	Trp	He	His	GIn	Ala	Val	Arg	Leu	Pro	Thr	Pro	Asn	Leu	His	
				385					390					395			
5		•															
	tgg	agg	gag	atc	tcc	agt	ggg	cat	ctg	gaa	ttg	gag	tgg	cag	cac	cca	1249
	Trp	Arg	Glu	lle	Ser	Ser	Gly	His	Leu	Glu	Leu	Glu	Trp	Gln	His	Pro	
			400					405					410				
10	tcg	tcc	tgg	gca	gcc	caa	gag	acc	tgt	tat	caa	ctc	cga	tac	aca	gga	1297
	Ser	Ser	Trp	Ala	Ala	Gln	Glu	Thr	Cys	Tyr	Gln	Leu	Arg	Tyr	Thr	Gly	
		415					420					425					
	gaa	ggc	cat	cag	gac	tgg	aag	gtg	ctg	gag	ccg	cct	ctc	ggg	gcc	cga	1345
15	Glu	Gly	His	Gln	Asp	Trp	Lys	Val	Leu	Glu	Pro	Pro	Leu	Gly	Ala	Arg	
	430					435					440					445	
	gga	ggg	acc	ctg	gag	ctg	cgc	ccg	cga	tct	cgc	tac	cgt	tta	cag	ctg	1393
	Gly	Gly	Thr	Leu	Glu	Leu	Arg	Pro	Arg.	Ser	Arg	Tyr	Arg	Leu	Gln	Leu	
20					450					455					460		
	cgc	gcc	agg	ctc	aac	ggc	CCC	acc	tac	caa	ggt	CCC	tgg	agc	tcg	tgg	1441
	Arg	Ala	Arg		Asn	Gly	Pro	Thr		Gln	Gly	Pro	Trp		Ser	Trp	
				465					470					475			
25																	
							gag										1489
	Ser	Asp		Thr	Arg	Val	Glu		Ala	Thr	Glu	Thr		Trp	He	Ser	
			480					485					490				
20																	4507
30					_		cta		_			_	_	_	_		1537
	Leu		Inr	Ala	Leu	HIS	Leu	Val	Leu	Gly	Leu		Ala	Val	Leu	Gly	
		495					500					505					
	 =	_#	_ _ _	- 4		.		ديد	_ •			_			a		1505
25							cag										1585
35		Leu	Leu	Leu	Arg		GIn	rne	rro	Ala		lyr	Arg	Arg	Leu		
	510					515					520					525	

	cat g	cc c	tg	tgg	ccc	tca	ctt	cca	gac	ctg	cac	cgg	gtc	cta	ggc	cag	1633
	His A	la L	.eu	Trp	Pro	Ser	Leu	Pro	Asp	Leu	His	Arg	Val	Leu	Gly	Gin	
					530					535					540		
5																	
	tac c	tt a	gg	gac	act	gca	gcc	ctg	agc	ccg	ccc	aag	gcc	aca	gtc	tca	1681
	Tyr L	eu A	rg	Asp	Thr	Ala	Ala	Leu	Ser	Pro	Pro	Lys	Ala	Thr	Val	Ser	
				545					550					555			
. 10	gat a	cc t	gt	gaa	gaa	gtg	gaa	ccc	agc	ctc	ctt	gaa	atc	ctc	CCC	aag	1729
	Asp T	hr C	ys	Glu	Glu	Val	Glu	Pro	Ser	Leu	Leu	Glu	He	Leu	Pro	Lys	
		5	60					565					570				
	tcc t	ca g	ag	agg	act	cct	ttg	CCC	ctg	tgt	tcc	tcc	cag	gcc	cag	atg	1777
15	Ser S	er G	ilu	Arg	Thr	Pro	Leu	Pro	Leu	Cys	Ser	Ser	GIn	Ala	Gln	Met	
	5	75					580					585					
	gac t	ac c	ga	aga	ttg	cag	cct	tct	tgc	ctg	ggg	acc	atg	CCC	ctg	tct	1825
	Asp T	yr A	rg	Arg	Leu		Pro	Ser	Cys	Leu	Gly	Thr	Met	Pro	Leu	Ser	
20	590					595					600					605	
	gtg t																1873
	Val C	ys P	ro	Pro		Ala	Glu	Ser	Gly		Cys	Cys	Thr	Thr		lle	
					610					615					620		
25																	
	gcc a														tga		1918
	Ala A	sn H			lyr	Leu	Pro	Leu		lyr	lrp	GIn	GIn				
				625					630					635			
20																	1001
30	gtcga	С															1924
	<210>	24	Ω														
	<211>	63															
35	<211>																
<i>J J</i>	<213>			sapi	ens												
	· L 1 U /	110		Jupi	2:10												

	<400	0> 2	248													
5	Met 1	Pro	Ser	Trp	Ala 5	Leu	Phe	Met	Val	Thr 10	Ser	Cys	Leu	Leu	Leu 15	Ala
	Pro	GIn	Asn	Leu 20	Ala	Gln	Val	Ser	Ser 25	GIn	Asp	Val	Ser	Leu 30	Leu	Ala
10	Ser	Asp	Ser 35	Glu	Pro	Leu	Lys	Cys 40	Phe	Ser	Arg	Thr	Phe 45	Glu	Asp	Leu
	Thr	Cys 50	Phe	Trp	Asp	Glu	GIu 55	Glu	Ala	Ala	Pro	Ser 60	Gly	Thr	Tyr	GIn
15	Leu 65	Leu	Tyr	Ala	Tyr	Pro 70	Arg	Glu	Lys	Pro	Arg 75	Ala	Cys	Pro	Leu	Ser 80
20	Ser	Gln	Ser	Met	Pro 85	His	Phe	Gly	Thr	Arg 90	Tyr	Val	Cys	Gln	Phe 95	Pro
20	Asp	Gln	Glu	Glu 100	Val	Pro	Leu	Phe	Phe 105	Pro	Leu	His	Leu	Trp 110	Val	Lys
25	Asn	Val	Phe 115	Leu	Asn	Gln	Thr	Arg 120	Thr	GIn	Arg	Val	Leu 125	Phe	Val	Asp
	Ser	Va1 130	Gly	Leu	Pro	Ala	Pro 135	Pro	Ser	lle	lle	Lys 140	Ala	Met	Gly	Gly
30	Ser 145	GIn	Pro	Gly	Glu	Leu 150	Gln	lle	Ser	Trp	Glu 155	Glu	Pro	Ala	Pro	Glu 160
25	lle	Ser	Asp	Phe	Leu 165	Arg	Tyr	Glu	Leu	Arg 170	Tyr	Gly	Pro	Arg	Asp 175	Pro
35	Lys	Asn	Ser	Thr	Gly	Pro	Thr	Val	lle	Gln	Leu	lle	Ala	Thr	Glu	Thr

				180					185					190		
5	Cys	Cys	Pro 195	Ala	Leu	GIn	Arg	Pro 200	His	Ser	Ala	Ser	Ala 205	Leu	Asp	Glr
J	Ser	Pro 210	Cys	Ala	GIn	Pro	Thr 215	Met	Pro	Trp	Gln	Asp 220	Gly	Pro	Lys	Glr
10	Thr 225	Ser	Pro	Ser	Arg	Glu 230	Ala	Ser	Ala	Leu	Thr 235	Ala	Glu	Gly	Gly	Ser 240
	Cys	Leu	lle	Ser	Gly 245	Leu	Gln	Pro	Gly	Asn 250	Ser	Tyr	Trp	Leu	GIn 255	Leu
15	Arg	Ser	Glu	Pro 260	Asp	Gly	lle	Ser	Leu 265	Gly	Gly	Ser	Trp	Gly 270	Ser	Trp
20	Ser	Leu	Pro 275	Val	Thr	Val	Asp	Leu 280	Pro	Gly	Asp	Ala	Va I 285	Ala	Leu	Gly
20	Leu	GIn 290	Cys	Phe	Thr	Leu	Asp 295	Leu	Lys	Asn	Val	Thr 300	Cys	GIn	Trp	Glr
25	GIn 305	Gin	Asp	His	Ala	Ser 310		Gln	Gly	Phe	Phe 315		His	Ser	Arg	Ala 320
	Arg	Cys	Cys	Pro	Arg 325	Asp	Arg	Tyr	Pro	lle 330	Trp	Glu	Asn	Cys	GI u 335	Glu
30	Glu	Glu	Lys	Thr 340	Asn	Pro	Gly	Leu	GIn 345	Thr	Pro	Gln	Phe	Ser 350	Arg	Cys
	His	Phe	Lys 355	Ser	Arg	Asn	Asp	Ser 360	lle	lle	His	He	Leu 365	Val	Glu	Val

Thr Thr Ala Pro Gly Thr Val His Ser Tyr Leu Gly Ser Pro Phe Trp

		370					375					380				
5	11e 385	His	Gin	Ala	Val	Arg 390	Leu	Pro	Thr	Pro	Asn 395	Leu	His	Trp	Arg	G11
J	lle	Ser	Ser	Gly	His 405	Leu	Glu	Leu	Glu	Trp 410	Gln	His	Pro	Ser	Ser 415	Tr
10	Ala	Ala	Gln	Glu 420	Thr	Cys	Tyr	Gln	Leu 425	Arg	Tyr	Thr	Gly	Glu 430	Gİy	His
	GIn	Asp	Trp 435	Lys	Val	Leu	Glu	Pro 440	Pro	Leu	Gly	Ala	Arg 445	Gly	Gly	The
15	Leu	G1u 450	Leu	Arg	Pro	Arg	Ser 455	Arg	Tyr	Arg	Leu	GIn 460	Leu	Arg	Ala	Arg
20	Leu 465	Asn	Gly	Pro	Thr	Tyr 470	Gln	Gly	Pro	Trp	Ser 475	Ser	Trp	Ser	Asp	Pro 480
20	Thr	Arg	Val	Glu	Thr 485	Ala	Thr	Glu	Thr	Ala 490	Trp	lle	Ser	Leu	Va I 495	Thr
25	Ala	Leu	His	Leu 500		Leu	Gly	Leu	Ser 505		Val	Leu	Gly	Leu 510		Leu
	Leu	Arg	Trp 515	Gln	Phe	Pro	Ala	His 520	Tyr	Arg	Arg	Leu	Arg 525	His	Ala	Leu
30	Trp	Pro 530	Ser	Leu	Pro	Asp	Leu 535	His	Arg	Val	Leu	Gly 540	Gln	Tyr	Leu	Arg
	Asp 545	Thr	Ala	Ala	Leu	Ser 550	Pro	Pro	Lys	Ala	Thr 555	Val	Ser	Asp	Thr	Cys

Glu Glu Val Glu Pro Ser Leu Leu Glu Ile Leu Pro Lys Ser Ser Glu

Arg Thr Pro Leu Pro Leu Cys Ser Ser Gin Ala Gin Met Asp Tyr Arg Arg Leu Gin Pro Ser Cys Leu Giy Thr Met Pro Leu Ser Val Cys Pro Pro Met Ala Glu Ser Gly Ser Cys Cys Thr Thr His Ile Ala Asn His Ser Tyr Leu Pro Leu Ser Tyr Trp Gln Gln Pro <210> 249 <211> 1924 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (11).. (1918) <223> <400> 249 gaattccacc atg ccc tcc tgg gcc ctc ttc atg gtc acc tcc tgc ctc Met Pro Ser Trp Ala Leu Phe Met Val Thr Ser Cys Leu ctc ctg gcc cct caa aac ctg gcc caa gtc agc agc caa gat gtc tcc Leu Leu Ala Pro Gln Asn Leu Ala Gln Val Ser Ser Gln Asp Val Ser ttg ctg gca tca gac tca gag ccc ctg aag tgt ttc tcc cga aca ttt

Leu Leu Ala Ser Asp Ser Glu Pro Leu Lys Cys Phe Ser Arg Thr Phe

	30					35					40					45	
	gag	gac	ctc	act	tgc	ttc	tgg	gat	gag	gaa	gag	gca	gcg	ccc	agt	ggg	193
	Glu	Asp	Leu	Thr	Cys	Phe	Trp	Asp	Glu	Glu	Glu	Ala	Ala	Pro	Ser	Gly	
5					50					55					60		
	aca	tac	cag	ctg	ctg	tat	gcc	tac	ccg	cgg	gag	aag	ccc	cgt	gct	tgc	241
	Thr	Tyr	Gin	Leu	Leu	Tyr	Ala	Tyr	Pro	Arg	Glu	Lys	Pro	Arg	Ala	Cys	
				65					70					75			
10				٠.													
	ccc	ctg	agt	tcc	cag	agc	atg	ccc	cac	ttt	gga	acc	cga	tac	gtg	tgc	289
	Pro	Leu	Ser	Ser	GIn	Ser	Met	Pro	His	Phe	Gly	Thr	Arg	Tyr	Val	Cys	
			80					85					90				
15	cag	ttt	cca	gac	cag	gag	gaa	gtg	cgt	ctc	ttc	ttt	ccg	ctg	cac	ctc	337
	Gin	Phe	Pro	Asp	Gln	Glu	Glu	Val	Arg	Leu	Phe	Phe	Pro	Leu	His	Leu	
		95					100					105					
	tgg	gtg	aag	aat	gtg	ttc	cta	aac	cag	act	cgg	act	cag	cga	gtc	ctc	385
20	Trp	Val	Lys	Asn	Val	Phe	Leu	Asn	Gln	Thr	Arg	Thr	GIn	Arg	Val	Leu	
	110					115					120					125	
	ttt	gtg	gac	agt	gta	ggc	ctg	ccg	gct	ccc	ccc	agt	atc	atc	aag	gcc	433
	Phe	Val	Asp	Ser	Val	Gly	Leu	Pro	Ala	Pro	Pro	Ser	lle	He	Lys	Ala	
25					130					135					140		
	atg	ggt	ggg	agc	cag	cca	ggg	gaa	ctt	cag	atc	agc	tgg	gag	gag	сса	481
	Met	Gly	Gly	Ser	Gln	Pro	Gly	Glu	Leu	Gln	lle	Ser	Trp	Glu	Glu	Pro	
				145					150					155			
30																	
	gct	cca	gaa	atc	agt	gat	ttc	ctg	agg	tac	gaa	ctc	cgc	tat	ggc	CCC	529
	Ala	Pro	Glu	He	Ser	Asp	Phe	Leu	Arg	Tyr	Glu	Leu	Arg	Tyr	Gly	Pro	
			160					165					170				
35	aga	gat	ccc	aag	aac	tcc	act	ggt	ccc	acg	gtc	ata	cag	ctg	att	gcc	577
	Arg	Asp	Pro	Lys	Asn	Ser	Thr	Gly	Pro	Thr	Val	He	Gln	Leu	He	Ala	

							,,,,										
	aca	раа	acc	tgc	tgc	cct	øct	ctø	Cag	aga	cct	cac	tca	gcc	tet	get	625
					Cys												020
5	190			-,-	-,-	195				6	200					205	
	ctg	gac	cag	tct	cca	tgt	gct	cag	ccc	aca	atg	ccc	tgg	caa	gat	gga	673
	Leu	Asp	Gln	Ser	Pro	Cys	Ala	GIn	Pro	Thr	Met	Pro	Trp	Gln	Asp	Gly	
					210					215					220		
10																	
	cca	aag	cag	acc	tcc	cca	agt	aga	gaa	gct	tca	gct	ctg	aca	gca	gag	721
	Pro	Lys	GIn	Thr	Ser	Pro	Ser	Arg	Glu	Ala	Ser	Ala	Leu	Thr	Ala	Glu	
				225					230					235			
15					ctc					_							769
	Gly	Gly		Cys	Leu	He	Ser		Leu	Gin	Pro	Gly		Ser	Tyr	Trp	
			240					245					250				
	c+a	car	cta	tac	200	maa.	cot	aa+	aaa	ato	+00	oto	aat	~~~	too	+~~	817
20					agc Ser												017
20	Lou	255	Lou	0,0	001	aiu	260	Λορ	uly	110	001	265	uly	uiy	001	11 P	
	gga	tcc	tgg	tcc	ctc	cct	gtg	act	gtg	gac	ctg	cct	gga	gat	gca	gtg	865
	Gly	Ser	Trp	Ser	Leu	Pro	Val	Thr	Vai	Asp	Leu	Pro	Gly	Asp	Ala	Val	
25	270					275					280					285	
	gca	ctt	gga	ctg	caa	tgc	ttt	acc	ttg	gac	ctg	aag	aat	gtt	acc	tgt	913
	Ala	Leu	Gly	Leu	Gln	Cys	Phe	Thr	Leu	Asp	Leu	Lys	Asn	Val	Thr	Cys	
					290					295					300		
30		_															
					cag												· 961
	GIN	irp	Gin		GIn	Asp	HIS	Ala		Ser	GIN	Gly	Phe		lyr	HIS	
				305					310					315			
35	age	ឧទទ	рся	Caa	tgc	tøc	ccc	ຊຽຊ	gac	agg	tac	ccc	atc	tøø	asa	aac	1009
رر					Cys												1003
	JJ1	, P	,,,u	/" B	0,0	J J J		/" 5	nup	A1 5	. ,			11 P	uiu	AUII	

			320					325					330				
	tac	σaa	asa	σaa	σασ	222	aca	aat	cca	aaa	cta	caa	acc	cca	cag	ttc	1057
																	1007
5	Uys	335	uiu	uiu	uiu	Lys	340	VOII	Pro	uly	Leu	345	1111	770	uiii	FIIC	
3		330					340					340					
	tct	cgc	tgc	cac	ttc	aag	tca	cga	aat	gac	agc	att	att	cac	atc	ctt	1105
									Asn								
	350	Ū	•			355		0			360					365	
10																	
	gtg	gag	gtg	acc	aca	gcc	ccg	ggt	act	gtt	cac	agc	tac	ctg	ggc	tcc	1153
									Thr								
					370			•		375			•		380		
15	cct	ttc	tgg	atc	cac	cag	gct	gtg	cgc	ctc	ccc	acc	cca	aac	ttg	cac	1201
•	Pro	Phe	Trp	lle	His	Gln	Ala	Val	Arg	Leu	Pro	Thr	Pro	Asn	Leu	His	
				385					390					395			
	tgg	agg	gag	atc	tcc	agt	ggg	cat	ctg	gaa	ttg	gag	tgg	cag	cac	cca	1249
20	Trp	Arg	Glu	lle	Ser	Ser	Gly	His	Leu	Glu	Leu	Glu	Trp	Gln	His	Pro	
			400					405					410				
	tcg	tcc	tgg	gca	gcc	caa	gag	acc	tgt	tat	caa	ctc	cga	tac	aca	gga	1297
	Ser	Ser	Trp	Ala	Ala	Gln	Glu	Thr	Cys	Tyr	Gln	Leu	Arg	Tyr	Thr	Gly	
25		415					420					425					
	gaa	ggc	cat	cag	gac	tgg	aag	gtg	ctg	gag	ccg	cct	ctc	ggg	gcc	cga	1345
	Glu	Gly	His	Gln	Asp	Trp	Lys	Val	Leu	Glu	Pro	Pro	Leu	Gly	Ala	Arg	
	430					435					440					445	
30																	
	gga	ggg	acc	ctg	gag	ctg	cgc	ccg	cga	tct	cgc	tac	cgt	tta	cag	ctg	1393
	Gly	Gly	Thr	Leu	Glu	Leu	Arg	Pro	Arg	Ser	Arg	Tyr	Arg	Leu	Gln	Leu	
					450					455					460		
35	cgc	gcc	agg	ctc	aac	ggc	ccc	acc	tac	caa	ggt	ccc	tgg	agc	tcg	tgg	1441
	Arg	Ala	Arg	Leu	Asn	Gly	Pro	Thr	Tyr	Gln	Gly	Pro	Trp	Ser	Ser	Trp	

				465					470					475			
	tcg	gac	cca	act	agg	gtg	gag	acc	gcc	acc	gag	acc	gcc	tgg	atc	tcc	1489
	Ser	Asp	Pro	Thr	Arg	Val	Glu	Thr	Ala	Thr	Glu	Thr	Ala	Trp	He	Ser	
5			480					485					490				
					ctg												1537
	Leu		Thr	Ala	Leu	His		Val	Leu	Gly	Leu		Ala	Val	Leu	Gly	
10		495					500					505					
10			-4-			.						.			-4		1505
					agg												1585
	510	Leu	Leu	Leu	Arg	515	uin	rne	Pro	Ala	520	ıyr	Arg	Arg	Leu	525	
	010					010					320					323	
15	cat	gcc	ctg	tgg	ccc	tca	ctt	сса	gac	ctg	cac	Cgg	gtc	cta	ggC	cag	1633
					Pro				_	_			_			_	
				·	530				•	535		_			540		
	tac	ctt	agg	gac	act	gca	gcc	ctg	agc	ccg	ccc	aag	gcc	aca	gtc	tca	1681
20	Tyr	Leu	Arg	Asp	Thr	Ala	Ala	Leu	Ser	Pro	Pro	Lys	Ala	Thr	Val	Ser	
				545					550					555			
	gat	acc	tgt	gaa	gaa	gtg	gaa	ccc	agc	ctc	ctt	gaa	atc	ctc	ccc	aag	1729
	Asp	Thr		Glu	Glu	Val	Glu		Ser	Leu	Leu	Glu		Leu	Pro	Lys	
25			560					565					570				
																	4777
					act												1777
	Ser	575	uiu	Arg	Thr	Pro	580	Pro	Leu	cys	ser	585	um	АТА	GIN	Mer	
30		3/3					360					303					
30	gac	tac	cga	aga	ttg	Сад	cct	tct	tøc	ctø	ggg	acc	atø	ccc	ctø	tet	1825
					Leu	_			_	-			_		_		1020
	590		0	0		595			-,-		600					605	
						_					-						
35	gtg	tgc	сса	ccc	atg	gct	gag	tca	ggg	tcc	tgc	tgt	acc	acc	cac	att	1873
					Met												

gcc aac cat tcc tac cta cca cta agc tat tgg cag cag cct tga Ala Asn His Ser Tyr Leu Pro Leu Ser Tyr Trp Gln Gln Pro gtcgac <210> 250 <211> 635 <212> PRT <213> Homo sapiens <400> 250 Met Pro Ser Trp Ala Leu Phe Met Val Thr Ser Cys Leu Leu Leu Ala Pro Gln Asn Leu Ala Gln Val Ser Ser Gln Asp Val Ser Leu Leu Ala Ser Asp Ser Glu Pro Leu Lys Cys Phe Ser Arg Thr Phe Glu Asp Leu Thr Cys Phe Trp Asp Glu Glu Glu Ala Ala Pro Ser Gly Thr Tyr Gln Leu Leu Tyr Ala Tyr Pro Arg Glu Lys Pro Arg Ala Cys Pro Leu Ser

Asp Gln Glu Glu Val Arg Leu Phe Phe Pro Leu His Leu Trp Val Lys
35 100 105 110

Ser Gln Ser Met Pro His Phe Gly Thr Arg Tyr Val Cys Gln Phe Pro

	Asn	Val	Phe 115	Leu	Asn	GIn	Thr	Arg 120	Thr	GIn	Arg	Val	Leu 125	Phe	Val	Asp
5	Ser	Val 130	Gly	Leu	Pro	Ala	Pro 135	Pro	Ser	lle	lle	Lys 140	Ala	Met	Gly	Gly
	Ser 145	Gln	Pro	Gly	Glu	Leu 150	Gln	lle	Ser	Trp	GI u 155	Glu	Pro	Ala	Pro	Glu 160
10	He	Ser	Asp	Phe	Leu 165	Arg	Tyr	Glu	Leu	Arg 170	Tyr	Gly	Pro	Arg	Asp 175	Pro
15	Lys	Asn	Ser	Thr 180	Gly	Pro	Thr	Val	lle 185	Gln	Leu	lle	Ala	Thr 190	Glu	Thr
13	Cys	Cys	Pro 195	Ala	Leu	Gln	Arg	Pro 200	His	Ser	Ala	Ser	Ala 205	Leu	Asp	Gln
20	Ser	Pro 210	Cys	Ala	GIn	Pro	Thr 215	Met	Pro	Trp	GIn	Asp 220	Gly	Pro	Lys	Gln
	Thr 225	Ser	Pro	Ser	Arg	Glu 230	Ala	Ser	Ala	Leu	Thr 235	Ala	Glu	Gly	Gly	Ser 240
25	Cys	Leu	lle	Ser	Gly 245	Leu	Gln	Pro	Gly	A sn 250	Ser	Tyr	Trp	Leu	GIn 255	Leu
30	Cys	Ser	Glu	Pro 260	Asp	Gly	lle	Ser	Leu 265	Gly	Gly	Ser	Trp	Gly 270	Ser	Trp
30	Ser	Leu	Pro 275	Val	Thr	Val	Asp	Leu 280	Pro	Gly	Asp	Ala	Va I 285	Ala	Leu	Gly
35	Leu	GIn 290	Cys	Phe	Thr	Leu	Asp 295	Leu	Lys	Asn	Val	Thr 300	Cys	GIn	Trp	Gln

	GIn 305	Gin	Asp	HIS	Ala	Ser 310	Ser	Gin	Gly	Phe	215	Tyr	His	Ser	Arg	A1a 320
5	Arg	Cys	Cys	Pro	Arg 325	Asp	Arg	Tyr	Pro	lle 330	Trp	Glu	Asn	Cys	Glu 335	Glu
	Glu	Glu	Lys	Thr 340	Asn	Pro	Gly	Leu	GIn 345	Thr	Pro	Gln	Phe	Ser 350	Arg	Cys
10	His	Phe	Lys 355	Ser	Arg	Asn	Asp	Ser 360	lle	lle	His	He	Leu 365	Val	Glu	Val
15	Thr	Thr 370	Ala	Pro	Gly	Thr	Va I 375	His	Ser	Tyr	Leu	Gly 380	Ser	Pro	Phe	Trp
	11e 385	His	Gln	Ala	Val	Arg 390	Leu	Pro	Thr	Pro	A sn 395	Leu	His	Trp	Arg	G1u 400
20	lle	Ser	Ser	Gly	His 405	Leu	Glu	Leu	Glu	Trp 410	Gln	His	Pro	Ser	Ser 415	Trp
	Ala	Ala	Gln	Glu 420	Thr	Cys	Tyr	Gin	Leu 425	Arg	Tyr	Thr	Gly	Glu 430	Gly	His
25	GIn	Asp	Trp 435	Lys	Val	Leu	Glu	Pro 440	Pro	Leu	Gly	Ala	Arg 445	Gly	Gly	Thr
30	Leu	Glu 450	Leu	Arg	Pro	Arg	Ser 455	Arg	Tyr	Arg	Leu	GIn 460	Leu	Arg	Ala	Arg
- •	Leu 465	Asn	Gly	Pro	Thr	Tyr 470	Gln	Gly	Pro	Trp	Ser 475	Ser	Trp	Ser	Asp	Pro 480
35	Thr	Arg	Val	Glu	Thr 485	Ala	Thr	Glu	Thr	Ala 490	Trp	lle	Ser	Leu	Va I 495	Thr

Ala Leu His Leu Val Leu Gly Leu Ser Ala Val Leu Gly Leu Leu Leu 500 505 510

Leu Arg Trp Gln Phe Pro Ala His Tyr Arg Arg Leu Arg His Ala Leu 5 515 520 525

Trp Pro Ser Leu Pro Asp Leu His Arg Val Leu Gly Gln Tyr Leu Arg 530 535 540

Asp Thr Ala Ala Leu Ser Pro Pro Lys Ala Thr Val Ser Asp Thr Cys 545 550 555 560

Glu Glu Val Glu Pro Ser Leu Leu Glu IIe Leu Pro Lys Ser Ser Glu 565 570 575

15

Arg Thr Pro Leu Pro Leu Cys Ser Ser Gln Ala Gln Met Asp Tyr Arg 580 585 590

Arg Leu Gin Pro Ser Cys Leu Gly Thr Met Pro Leu Ser Val Cys Pro 20 595 600 605

Pro Met Ala Glu Ser Gly Ser Cys Cys Thr Thr His IIe Ala Asn His 610 615 620

25 Ser Tyr Leu Pro Leu Ser Tyr Trp Gln Gln Pro 625 630 635

<210> 251

30 <211> 1924

<212> DNA

<213> Homo sapiens

<220>

35 <221> CDS

<222> (11).. (1918)

<223>

	<400)> :	251														
	gaat	ttcc	acc	atg	ccc	tcc	tgg (gcc	ctc	ttc	atg	gtc	acc	tcc	tgc	ctc	49
5				Met	Pro	Ser	Trp /	Ala	Leu	Phe	Met	Val	Thr	Ser	Cys	Leu	
				1			į	5					10				
	ctc	ctg	gcc	cct	caa	aac	ctg	gcc	caa	gto	agc	agc	caa	gat	gtc	tcc	97
	Leu	Leu	Ala	Pro	Gln	Asn	Leu	Ala	Gln	Val	Ser	Ser	Gln	Asp	Val	Ser	
10		15					20					25					
	ttg	ctg	gca	tca	gac	tca	gag	ccc	ctg	aag	tgt	ttc	tcc	cga	aca	ttt	145
	Leu	Leu	Ala	Ser	Asp	Ser	Glu	Pro	Leu	Lys	Cys	Phe	Ser	Arg	Thr	Phe	
	30					35					40					45	
15																	
	gag	gac	ctc	act	tgc	ttc	tgg	gat	gag	gaa	gag	gca	gcg	CCC	agt	ggg	193
	Glu	Asp	Leu	Thr	Cys	Phe	Trp	Asp	Glu	Glu	Glu	Ala	Ala	Pro	Ser	Gly	
					50					55					60		
20	aca	tac	cag	ctg	ctg	tat	gcc	tac	ccg	cgg	gag	aag	ccc	cgt	gct	tgc	241
	Thr	Tyr	Gln	Leu	Leu	Tyr	Ala	Tyr	Pro	Arg	Glu	Lys	Pro	Arg	Ala	Cys	
				65					70					75			
	ccc	ctg	agt	tcc	cag	agc	atg	ccc	cac	ttt	gga	acc	cga	tac	gtg	tgc	289
25	Pro	Leu	Ser	Ser	Gln	Ser	Met	Pro	His	Phe	Gly	Thr	Arg	Tyr	Val	Cys	
			80					85					90				
	cag	ttt	cca	gac	cag	gag	gaa	gtg	cgt	ctc	ttc	ttt	ccg	ctg	cac	ctc	337
	Gln	Phe	Pro	Asp	Gln	Glu	Glu	Val	Arg	Leu	Phe	Phe	Pro	Leu	His	Leu	
30		95					100					105					
	tgg	gtg	aag	aat	gtg	ttc	cta	aac	cag	act	cgg	act	cag	cga	gtc	ctc	385
	Trp	Val	Lys	Asn	Val	Phe	Leu	Asn	Gln	Thr	Arg	Thr	Gln	Arg	Val	Leu	
	110					115					120					125	
35																	
	ttt	gtg	gac	agt	gta	ggc	ctg	ccg	gct	ccc	ccc	agt	atc	atc	aag	gcc	433

	Phe	Val	Asp	Ser	Va I 130	Gly	Leu	Pro	Ala	Pro 135	Pro	Ser	lle	He	Lys 140	Ala	
	atg	ggt	ggg	agc	cag	cca	ggg	gaa	ctt	cag	atc	agc	tgg	gag	gag	cca	481
5									Leu								
				145					150					155			
	gct	сса	gaa	atc	agt	gat	ttc	ctg	agg	tac	gaa	ctc	cgc	tat	ggc	ccc	529
	Ala	Pro	Glu	He	Ser	Asp	Phe	Leu	Arg	Tyr	Glu	Leu	Arg	Tyr	Gly	Pro	
10			160					165					170				
	aga	gat	ccc	aag	aac	tcc	act	ggt	ccc	acg	gtc	ata	cag	ctg	att	gcc	577
	Arg		Pro	Lys	Asn	Ser		Gly	Pro	Thr	Val		GIn	Leu	He	Ala	
1.5		175					180					185					
15	202	maa	200	tac	tac	cot	act	ct «	cag	242	oot	000	too		tot	got	625
				_	_		_	_	Gln	_				_		_	023
	190			,,,	-,-	195	,,, ,		4	6	200		001	,,,,	001	205	
20	ctg	gac	cag	tct	cca	tgt	gct	cag	ccc	aca	atg	CCC	tgg	caa	gat	gga	673
	Leu	Asp	Gln	Ser	Pro	Cys	Ala	Gln	Pro	Thr	Met	Pro	Trp	Gln	Asp	Gly	
					210					215					220		
	cca	aag	cag	acc	tcc	cca	agt	aga	gaa	gct	tca	gct	ctg	aca	gca	gag	721
25	Pro	Lys	Gln	Thr	Ser	Pro	Ser	Arg	Glu	Ala	Ser	Ala	Leu	Thr	Ala	Glu	
				225					230					235			
	ggt	gga	agc	tgc	ctc	atc	tca	gga	ctc	cag	cct	ggc	aac	tcc	tac	tgg	769
	Gly	Gly	Ser	Cys	Leu	He	Ser	Gly	Leu	Gln	Pro	Gly	Asn	Ser	Tyr	Trp	
30			240					245					250				
								_	ggg								817
	Leu		Leu	Arg	Ser	Glu		Asp	Gly	He	Ser		Gly	Gly	Ser	Irp	
35		255					260					265					
	gga	tcc	tgg	tcc	ctc	act	gtg	act	gtg	gac	ctg	cct	gga	gat	gca	gtg	865

	Gly	Ser	Trp	Ser	Leu	Thr	Val	Thr	Val	Asp	Leu	Pro	Gly	Asp	Ala	Val	
	270					275					280					285	
	gca	ctt	gga	ctg	caa	tgc	ttt	acc	ttg	gac	ctg	aag	aat	gtt	acc	tgt	913
5	Ala	Leu	Gly	Leu	GIn	Cys	Phe	Thr	Leu	Asp	Leu	Lys	Asn	Val	Thr	Cys	
					290					295					300		
	caa	tgg	cag	caa	cag	gac	cat	gct	agc	tcc	caa	ggc	ttc	ttc	tac	cac	961
					Gln												
10		•		305					310			•		315			
	agc	agg	gca	cgg	tgc	tgc	CCC	aga	gac	agg	tac	CCC	atc	tgg	gag	aac	1009
	_				Cys												
		0	320	6	-,-	-,-		325		8	.,.		330				
15																	
10	tec	раа	gag	gaa	gag	aaa	aca	aat	cca	gga	cta	сад	acc	cca	cag	ttc	1057
					Glu												.007
	0,0	335	uiu	u i u	uiu	_,0	340	7.011	110	uly	Lou	345		110	WIII.	1110	
							0.10					010					
20	tct	CgC	tgc	cac	ttc	аар	tca	Cga	aat	gac	agc	att	att	cac	atc	ctt	1105
					Phe												1100
	350	6	-,-			355		6	7.011	7100	360	110				365	
											000						
	gtg	gag	ρtρ	acc	aca	gcc	CCS	σσ†	act	øtt	cac	agc	tac	ctø	ppc	tcc	1153
25					Thr												1100
23	,	u.u	, ,	••••	370	,,,u		u .,	••••	375		001	, ,,	Lou	380	001	
					0.0					0,0					000		
	cct	ttc	t g g	atc	cac	Cag	gct	øtø	CPC	ctc	ccc	acc	cca	aac	ttø	cac	1201
					His												1201
30				385			,,,,a	741	390	Lou				395	Lou		
50				000					000					000			
	tøø	арр	gag	atc	tcc	aot	σσσ	cat	ctø	gaa	ttσ	៤ ១៤	tσσ	cag	cac	cca	1249
					Ser												1270
	p	, ш Б	400		501	501	41 J	405	Lou	uiu	Lou	uiu	410	4111	1110		
35			100					700					710				
55	tea	too	taa	aca	gcc	Caa	gan	200	† n+	+2+	Caa	cto	CGO	tan	202	aas	1297
	LUB	LUU	rgg	gua	guu	udd	gag	auti	rgr	Lal	uaa	ULU	uga	Lau	ava	БВа	1231

	Ser		Trp	Ala	Ala	Gln		Thr	Cys	Tyr	GIn		Arg	Tyr	Thr	Gly	
		415					420					425					
	gaa	ggc	cat	cag	gac	tgg	aag	gtg	ctg	gag	ccg	cct	ctc	ggg	gcc	cga	1345
5	Glu	Gly	His	GIn	Asp	Trp	Lys	Val	Leu	Glu	Pro	Pro	Leu	Gly	Ala	Arg	
	430					435					440					445	
											cgc						1393
	Gly	Gly	Thr	Leu		Leu	Arg	Pro	Arg	•	Arg	Tyr	Arg	Leu		Leu	
10					450					455					460		
	cgc	gcc	agg	ctc	aac	ggc	CCC	acc	tac	caa	ggt	CCC	tgg	agc	tcg	tgg	1441
											Gly						
				465					470					475			
15																	
	tcg	gac	cca	act	agg	gtg	gag	acc	gcc	acc	gag	acc	gcc	tgg	atc	tcc	1489
	Ser	Asp	Pro	Thr	Arg	Val	Glu	Thr	Ala	Thr	Glu	Thr	Ala	Trp	He	Ser	
			480					485					490				
20																	4507
20			•								ctc						1537
	Leu	495	1111	на	Leu	піб	500	vai	Leu	ч	Leu	505	АТА	vai	Leu	шу	
		400					000					000					
	ctg	ctg	ctg	ctg	agg	tgg	cag	ttt	cct	gca	cac	tac	agg	aga	ctg	agg	1585
25	Leu	Leu	Leu	Leu	Arg	Trp	Gln	Phe	Pro	Ala	His	Tyr	Arg	Arg	Leu	Arg	
	510					515					520					525	
	cat	gcc	ctg	tgg	CCC	tca	ctt	cca	gac	ctg	cac	cgg	gtc	cta	ggc	cag	1633
	His	Ala	Leu	Trp		Ser	Leu	Pro	Asp		His	Arg	Val	Leu		Gln	
30					530					535					540		
	tac	o++	000	400	aat	~~	~~	ot a	000	00%	000	000	~ 00	000	a+ a	+	1601
							_	_	_	_	ccc Pro	-	_		_		1681
	.,.	_50	6	545		u			550		•	_,0	u	555	,	JU1	
35																	
	gat	acc	tgt	gaa	gaa	gtg	gaa	CCC	agc	ctc	ctt	gaa	atc	ctc	ccc	aag	1729

	Asp Thr	Cys 560	Glu (Glu \	Val	Glu	Pro 565	Ser	Leu	Leu	Glu	lle 570	Leu	Pro	Lys	
	tcc tca	gag	agg a	act o	cct	ttg	ccc	ctg	tgt	tcc	tcc	cag	gcc	cag	atg	1777
5	Ser Ser	Glu	Arg 7	Thr F	Pro	Leu	Pro	Leu	Cys	Ser	Ser	Gln	Ala	Gln	Met	
	575					580					585					
																400=
	gac tac															1825
10	Asp Tyr 590	Arg	Arg I		61n 595	Pro	ser	Cys	Leu	600	inr	Met	Pro	Leu	ser 605	
10	390			•	090					000					000	
	gtg tgc	cca	CCC 8	atg g	gct	gag	tca	ggg	tcc	tgc	tgt	acc	acc	cac	att	1873
	Val Cys															
			(610					615					620		
15																
	gcc aac	cat	tcc t	tac o	cta	cca	cta	agc	tat	tgg	cag	cag	cct	tga		1918
	Ala Asn	His	Ser	Tyr l	Leu	Pro	Leu	Ser	Tyr	Trp	GIn	Gln	Pro			
			625					630					635			
20	gtcgac															1924
	<210> 2	252														
		635														
25		PRT														
•	<213> I	Homo	sapie	ens												
									·							
	<400> 2	252						•								
	Met Pro	Ser	Trp /	Ala L	Leu	Phe	Met	Val	Thr	Ser	Cys	Leu	Leu	Leu	Ala	
30	1			5					10					15		
	Pro Gln	Asn	Leu A	Ala G	GIn '	Val	Ser	Ser	Gln	Asp	Val	Ser	Leu	Leu	Ala	
			20					25		•			30			
35	Ser Asp	Ser	Glu F	Pro L	Leu I	Lys	Cys	Phe	Ser	Arg	Thr	Phe	Glu	Asp	Leu	
		35					40					45				

	Thr	Cys 50	Phe	Trp	Asp	Glu	GIu 55	Glu	Ala	Ala	Pro	Ser 60	Gly	Thr	Tyr	Gin
5	Leu 65	Leu	Tyr	Ala	Tyr	Pro 70	Arg	Glu	Lys	Pro	Arg 75	Ala	Cys	Pro	Leu	Ser 80
10	Ser	Gln	Ser	Met	Pro 85	His	Phe	Gly	Thr	Arg 90	Tyr	Val	Cys	Gln	Phe 95	Pro
	Asp	Gln	Glu	Glu 100	Val	Arg	Leu	Phe	Phe 105	Pro	Leu	His	Leu	Trp 110	Val	Lys
15	Asn	Val	Phe 115	Leu	Asn	GIn	Thr	Arg 120	Thr	Gln	Arg	Val	Leu 125	Phe	Val	Asp
	Ser	Val 130	Gly	Leu	Pro	Ala	Pro 135	Pro	Ser	lle	lle	Lys 140	Ala	Met	Gly	Gly
20	Ser 145	Gln	Pro	Gly	Glu	Leu 150	GIn	lle	Ser	Trp	Glu 155	Glu	Pro	Ala	Pro	GIu 160
25	lle	Ser	Asp	Phe	Leu 165	Arg	Tyr	Glu	Leu	Arg 170	Tyr	Gly	Pro	Arg	Asp 175	Pro
	Lys	Asn	Ser	Thr 180	Gly	Pro	Thr				Leu		Ala	Thr 190	Glu	Thr
30	Cys	Cys	Pro 195	Ala	Leu	Gln	Arg	Pro 200	His	Ser	Ala	Ser	Ala 205	Leu	Asp	GIn
	Ser	Pro 210	Cys	Ala	GIn	Pro	Thr 215	Met	Pro	Trp	Gln	Asp 220	Gly	Pro	Lys	GIn
35	Thr 225	Ser	Pro	Ser	Arg	Glu 230	Ala	Ser	Ala	Leu	Thr 235	Ala	Glu	Gly	Gly	Ser 240

	Cys	Leu	lle	Ser	Gly 245	Leu	Gln	Pro	Gly	Asn 250	Ser	Tyr	Trp	Leu	GIn 255	Leu
5	Arg	Ser	Glu	Pro 260	Asp	Gly	lle	Ser	Leu 265	Gly	Gly	Ser	Trp	Gly 270	Ser	Trp
10	Ser	Leu	Thr 275	Val	Thr	Val	Asp	Leu 280	Pro	Gly	Asp	Ala	Va I 285	Ala	Leu	Gly
	Leu	GIn 290	Cys	Phe	Thr	Leu	Asp 295	Leu	Lys	Asn	Val	Thr 300	Cys	GIn	Trp	GIn
15	GIn 305	GIn	Asp	His	Ala	Ser 310	Ser	Gin	Gly	Phe	Phe 315	Tyr	His	Ser	Arg	Ala 320
	Arg	Cys	Cys	Pro	Arg 325	Asp	Arg	Tyr	Pro	11e 330	Trp	Glu	Asn	Cys	Glu 335	Glu
20	Glu	Glu	Lys	Thr 340	Asn	Pro	Gly	Leu	GIn 345	Thr	Pro	Gln	Phe	Ser 350	Arg	Cys
25	His	Phe	Lys 355	Ser	Arg	Asn	Asp	Ser 360	lle	lle	His	lle	Leu 365	Val	Glu	Val
	Thr	Thr 370	Ala	Pro	Gly	Thr	Va I 375	His	Ser	Tyr	Leu	Gly 380	Ser	Pro	Phe	Trp
30	11e 385	His	GIn	Ala	Val	Arg 390	Leu	Pro	Thr	Pro	Asn 395	Leu	His	Trp	Arg	Glu 400
	lle	Ser	Ser	Gly	His 405	Leu	Glu	Leu	Glu	Trp 410	Gln	His	Pro	Ser	Ser 415	Trp
35	Ala	Ala	Gln	Glu 420	Thr	Cys	Tyr	Gln	Leu 425	Arg	Tyr	Thr	Gly	Glu 430	Gly	His

	Gln	Asp	Trp 435	Lys	Val	Leu	Glu	Pro 440	Pro	Leu	Gly	Ala	Arg 445	Gly	Gly	Thr
5	Leu	Glu 450	Leu	Arg	Pro	Arg	Ser 455	Arg	Tyr	Arg	Leu	GIn 460	Leu	Arg	Ala	Arg
10	Leu 465	Asn	Gly	Pro	Thr	Tyr 470	GIn	Gly	Pro	Trp	Ser 475	Ser	Trp	Ser	Asp	Pro 480
	Thr	Arg	Val	Glu	Thr 485	Ala	Thr	Glu	Thr	Ala 490	Trp	lle	Ser	Leu	Va I 495	Thr
15	Ala	Leu	His	Leu 500	Val	Leu	Gly	Leu	Ser 505	Ala	Val	Leu	Gly	Leu 510	Leu	Leu
	Leu	Arg	Trp 515	Gln	Phe	Pro	Ala	His 520	Tyr	Arg	Arg	Leu	Arg 525	His	Ala	Leu
20	Trp	Pro 530	Ser	Leu	Pro	Asp	Leu 535	His	Arg	Val	Leu	Gly 540	GIn	Tyr	Leu	Arg
25	Asp 545	Thr	Ala	Ala	Leu	Ser 550	Pro	Pro	Lys	Ala	Thr 555	Val	Ser	Asp	Thr	Cys 560
	Glu	Glu	Val	Glu	Pro 565	Ser	Leu	Leu	Glu	lle 570	Leu	Pro	Lys	Ser	Ser 575	Glu
30	Arg	Thr	Pro	Leu 580	Pro	Leu	Cys	Ser	Ser 585	Gln	Ala	GIn	Met	Asp 590	Tyr	Arg
	Arg	Leu	GIn 595	Pro	Ser	Cys	Leu	Gly 600	Thr	Met	Pro	Leu	Ser 605	Val	Cys	Pro
35	Pro	Met 610	Ala	Glu	Ser	Gly	Ser 615	Cys	Cys	Thr	Thr	His 620	lle	Ala	Asn	His

Ser Tyr Leu Pro Leu Ser Tyr Trp Gln Gln Pro 625 630 635

5

<210> 253

<211> 1572

<212> DNA

<213> Homo sapiens

10

15

20

25

30

35

<400> 253

atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60 gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120 180 tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct ggaaagggtc ttgagtgggt tggacggatt tatcctggag atggagaaac tatctacaat 240 gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg 300 gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcgag aggctatgat 360 gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 420 ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctgca 480 ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 540 ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 600 ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt 660 720 ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt

ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa

	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
5	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
	ggaaagggtc	ttgagtgggt	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
10	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
				gccgtgtatt			1140
15				accacggtca			1200
				ggatcggata gcctccatct			1260 1320
20				tattggtacc			1380
				cttgcctcag			1440
				aaaatcagca			1500
25	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	1560
	ctggaaatca	aa					1572

<210> 254

<211> 524

<212> PRT

<213> Homo sapiens

35

<400> 254

	Met 1	Asp	Trp	Thr	Trp 5	Arg	Phe	Leu	Phe	10	Val	Ala	Ala	Ala	Thr 15	Gly
5	Val	Gln	Ser	GIn 20	Val	Gln	Leu	Val	GIn 25	Ser	Gly	Pro	Glu	Va I 30	Lys	Lys
	Pro	Gly	Ala 35	Ser	Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe
10	Thr	Asn 50	Ser	Trp	Met	Asn	Trp 55	Val	Arg	GIn	Arg	Pro 60	Gly	Lys	Gly	Leu
15	Glu 65	Trp	Val	Gly	Arg	lle 70	Tyr	Pro	Gly	Asp	Gly 75	Glu	Thr	lle	Tyr	Asn 80
13	Gly	Lys	Phe	Arg	Va I 85	Arg	Val	Thr	lle	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser
20	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
25	GIn	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
30	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	He	Va I 155	Met	Thr	Gin	Ser	Ala 160
30	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
35	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp

	ıyr	Leu	195	Lys	Pro	GIY	GIN	ser 200	Pro	GIN	Leu	Leu	205	ıyr	Arg	Met
5	Ser	Asn 210	Leu	Ala	Ser	Gly	Val 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
10	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	lle	G1u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
15	Gln	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
15	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
20	Glu	Va I 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	GIn	Arg	Pro 320
25	Gly	Lys	Gly	Leu	Glu 325	Trp	Val	Gly	Arg	lle 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
20	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	He	Thr 350	Ala	Asp
30	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Glu	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
35	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe

Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly 385 390 395 400

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp lle Val Met
5 405 410 415

Thr Gin Ser Ala Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser 420 425 430

10 He Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr 435 440 445

Tyr Leu Tyr Trp Tyr Leu Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu 450 455 460

Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser465470475480

Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys lle Ser Arg Val Glu 485 490 495

Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His Ile Glu Tyr Pro
500 505 510

25 Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys 515 520

<210> 255

30 <211> 354

15

20

<212> DNA

<213> Homo sapiens

<400> 255

35 caggtgcagc tggtgcagtc tggacctgag gtgaagaagc ctggggcctc agtgaaggtc

	tcctgcaagg cttctggata caccttcacc aactcctgga tgaactgggt gaggcagagg	120
	cctggaaagg gtcttgagtg ggttggacgg atttatcctg gagatggaga aactatctac	180
5	aatgggaaat toagggtoag agtoacgatt accgcggacg aatccacgag cacagcctac	240
	atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc gagaggctat	300
10	gatgattact cgtttgctta ctggggccag ggaaccacgg tcaccgtctc ttca	354
15	<210> 256 <211> 118 <212> PRT <213> Homo sapiens	
	<400> 256 Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys Pro Gly Ala 1 5 10 15	
20	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Ser 20 25 30	
25	Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	
	Gly Arg lie Tyr Pro Gly Asp Gly Glu Thr lie Tyr Asn Gly Lys Phe 50 55 60	
30	Arg Val Arg Val Thr IIe Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80	
35	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
	Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly Gln Gly Thr	

100 105 110 Thr Val Thr Val Ser Ser 115 5 <210> 257 <211> 336 <212> DNA 10 <213> Homo sapiens <400> 257 gatattgtga tgactcagtc tgcactctcc ctgcccgtca cccctggaga gccggcctcc 60 15 atotoctgca ggtctagtaa gagtctcctg catagtaatg gcaacactta cttgtattgg 120 tacctgcaga agccagggca gtctccacag ctcctgatct atcggatgtc caaccttgcc 180 tcaggggtcc ctgacaggtt cagtggcagt ggatcaggca cagcttttac actgaaaatc 240 20 300 agcagagtgg aggctgagga tgttggggtt tattactgca tgcaacatat agaatatcct 336 tttacgttcg gccaagggac caaactggaa atcaaa 25 <210> 258 <211> 112 <212> PRT <213> Homo sapiens 30 <400> 258 Asp lie Val Met Thr Gin Ser Ala Leu Ser Leu Pro Val Thr Pro Gly 5 10 15 35 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser

25

30

	Asn Gly Asn Thr Tyr Leu Tyr Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45	
5	Pro Gin Leu Leu ile Tyr Arg Met Ser Asn Leu Ala Ser Giy Val Pro 50 55 60	
10	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys IIe 65 70 75 80	
10	Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 85 90 95	
15	lle Glu Tyr Pro Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu lle Lys 100 105 110	
20	<210> 259 <211> 1572 <212> DNA <213> Homo sapiens	
25	<400> 259 atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag	60
23	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc	120
	tgcaaggctt ctggatacac cttcaccaac tcctggatga actggatcag gcagaggcct	180
30	ggaaagggtc ttgagtggat tggacggatt tatcctggag atggagaaac tatctacaat	240
	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg	300
35	gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcgag aggctatgat	360
	gattactcgt ttgcttactg gggccaggga accctggtca ccgtctcttc aggtggtggt	420

	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctgca	480
5	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
3	ctcctgcata	gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	600
	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
10	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
15	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
13	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actggatcag	gcagaggcct	960
20	ggaaagggtc	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
25	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
23	gattactcgt	ttgcttactg	gggccaggga	accctggtca	ccgtctcttc	aggtggtggt	1200
	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctgca	1260
30	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
	ctcctgcata	gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	1380
35	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500

ctggaaatca aa <210> 260 <211> 524 <212> PRT <213> Homo sapiens <400> 260 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly Val Gln Ser Gln Val Gln Leu Val Gln Ser Gly Pro Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Ser Trp Met Asn Trp ile Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp lle Gly Arg lle Tyr Pro Gly Asp Gly Glu Thr lle Tyr Asn Gly Lys Phe Arg Val Arg Val Thr IIe Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly

ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa

	Gln	Gly 130	Thr	Leu	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
5	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va I 155	Met	Thr	Gln	Ser	Ala 160
	Leu	Ser	Leu	Pro	Va I 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
10	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
15	Tyr	Leu	GIn 195	Lys	Pro	Gly	GIn	Ser 200	Pro	Gln	Leu	Leu	lle 205	Tyr	Arg	Met
13	Ser	A sn 210	Leu	Ala	Ser	Gly	Val 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
20	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	lle	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
25	GIn	Gly	Thr	Lys 260	Leu	Glu	lle	Ĺys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
30	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	Gln	Leu	Val	GIn 285	Ser	Gly	Pro
30	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
35	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	lle	Arg	Gln	Arg	Pro 320

	Gly	Lys	Gly	Leu	Glu	Trp	He	Gly	Arg	lle	Tyr	Pro	Gly	Asp	Gly	Glu
					325					330					335	
	•															
	Thr	He	Tyr	Asn	Gly	Lys	Phe	Arg	Val	Arg	Val	Thr	Нe	Thr	Ala	Asp
5				340					345					350		

- Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu 355 360 365
- 10 Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe 370 375 380
 - Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly 385 390 395 400

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp lie Val Met
405 410 415

Thr Gin Ser Ala Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser 20 420 425 430

15

30

35

- Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr 435 440 445
- Tyr Leu Tyr Trp Tyr Leu Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu 450 455 460
 - Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser 465 470 475 480

Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys IIe Ser Arg Val Glu 485 490 495

Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His lle Glu Tyr Pro
500 505 510

Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu !le Lys 515 520

5 <210> 261 <211> 354 <212> DNA <213> Homo sapiens 10 <400> 261 caggtgcagc tggtgcagtc tggacctgag gtgaagaagc ctggggcctc agtgaaggtc 60 120 tcctgcaagg cttctggata caccttcacc aactcctgga tgaactggat caggcagagg 15 cctggaaagg gtcttgagtg gattggacgg atttatcctg gagatggaga aactatctac 180 aatgggaaat toagggtoag agtoacgatt accgcggacg aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc gagaggctat 300 20 gatgattact cgtttgctta ctggggccag ggaaccctgg tcaccgtctc ttca 354 <210> 262 25 <211> 118 <212> PRT <213> Homo sapiens <400> 262 30 Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Ser

35

20

Trp Met Asn Trp IIe Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp IIe

25

	35		40		45	
5	Gly Arg Ilo 50	e Tyr Pro Gly	Asp Gly GI 55	u Thr lie Tyr 60	Asn Gly Lys	Phe
3	Arg Val Arg 65	g Val Thr lle 70	Thr Ala As	p Glu Ser Thr 75	Ser Thr Ala	Tyr 80
10	Met Glu Le	u Ser Ser Leu 85	Arg Ser GI	u Asp Thr Ala 90	Val Tyr Tyr 95	Cys
	Ala Arg Gly	y Tyr Asp Asp 100	Tyr Ser Ph	e Ala Tyr Trp 5	Gly Gln Gly 110	Thr
15	Leu Vai Th	r Val Ser Ser 5		,		
20	<210> 263 <211> 1573 <212> DNA <213> Mus	2 musculus				
25	<400> 263 atggaatggc	ctttgatctt t	ctcttcctc c	tgtcaggaa ctgo	caggtgt ccact	cccag 60
	gttcagctgc	agcagtctgg a	cctgagctg g	tgaagcctg ggg	octcagt gaaga	atttcc 120
20	tgcaaggctt	ctggctatgc a	ttcactaac t	cctggatga actį	gggtgaa gcaga	aggcct 180
30	ggaaagggtc	ttgagtggat t	ggacggatt t	atcctggag atgg	gagaaac tatct	acaat 240
	gggaaattca	gggtcaaggc c	acactgact g	cagacaaat ccto	ccagcac agcct	acatg 300
35	gatatcagca	gcctgacatc t	gaggactct g	cggtctact tctg	gtgcaag aggct	atgat 360

	gattactcgt	ttgcttactg	gggccaaggg	actctggtca	ctgtctctgc	aggtggtggt	420
	ggttcgggtg	gtggtggttc	gggtggtggc	ggatoggata	ttgtgatgac	tcaggctgca	480
5	ccctctatac	ctgtcactcc	tggagagtca	gtatccatct	cctgtaggtc	tagtaagagt	540
	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	tgcagaggcc	aggccagtct	600
10	cctcaactcc	tgatatatcg	gatgtccaac	cttgcctcag	gagtcccaga	taggttcagt	660
10	ggcagtgggt	caggaactgc	tttcacactg	agaatcagta	gagtggaggc	tgaggatgtg	720
	ggtgtttatt	actgtatgca	acatatagaa	tatcctttta	cgttcggatc	ggggaccaag	780
15	ctggaaataa	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
	gttcagctgc	agcagtctgg	acctgagctg	gtgaagcctg	gggcctcagt	gaagatttcc	900
20	tgcaaggctt	ctggctatgc	attcactaac	tcctggatga	actgggtgaa	gcagaggcct	960
20	ggaaagggtc	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	gggtcaaggc	cacactgact	gcagacaaat	cctccagcac	agcctacatg	1080
25	gatatcagca	gcctgacatc	tgaggactct	gcggtctact	tctgtgcaag	aggctatgat	1140
	gattactcgt	ttgcttactg	gggccaaggg	actctggtca	ctgtctctgc	aggtggtggt	1200
30	ggttcgggtg	gtggtggttc	gggtggtggc	ggatcggata	ttgtgatgac	tcaggctgca	1260
30	ccctctatac	ctgtcactcc	tggagagtca	gtatccatct	cctgtaggtc	tagtaagagt	1320
	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	tgcagaggcc	aggccagtct	1380
35	cctcaactcc	tgatatatcg	gatgtccaac	cttgcctcag	gagtcccaga	taggttcagt	1440

ggcagtgggt caggaactgc tttcacactg agaatcagta gagtggaggc tgaggatgtg ggtgtttatt actgtatgca acatatagaa tatcctttta cgttcggatc ggggaccaag ctggaaataa aa <210> 264 <211> 524 <212> PRT <213> Mus musculus <400> 264 Met Glu Trp Pro Leu IIe Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Ser Trp Met Asn Trp Val Lys Gln Arg Pro Gly Lys Gly Leu Glu Trp lle Gly Arg lle Tyr Pro Gly Asp Gly Glu Thr lle Tyr Asn Gly Lys Phe Arg Val Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Asp lle Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly

	Gln	Gly 130	Thr	Leu	Val	Thr	Va I 135	Ser	Ala	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
5	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Val 155	Met	Thr	Gin	Ala	Ala 160
10	Pro	Ser	lle	Pro	Val 165	Thr	Pro	Gly	Glu	Ser 170	Val	Ser	lle	Ser	Cys 175	Arg
	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
15	Phe	Leu	GIn 195	Arg	Pro	Gly	GIn	Ser 200	Pro	GIn	Leu	Leu	lle 205	Tyr	Arg	Met
	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
20	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Arg	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
25	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	lle	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
	Ser	Gly	Thr	Lys 260		Glu	lle	Lys			Gly		Ser	Gly 270	Gly	Gly
30	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	GIn	GIn 285	Ser	Gly	Pro
	Glu	Leu 290	Val	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	He	Ser 300	Cys	Lys	Ala	Ser
35	Gly 305	Tyr	Ala	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Lys	Gin	Arg	Pro 320

	Gly	Lys	Gly	Leu	Glu 325	Trp	lle	Gly	Arg	lle 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
5	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Lys	Ala	Thr	Leu	Thr 350	Ala	Asp
10	Lys	Ser	Ser 355	Ser	Thr	Ala	Tyr	Met 360	Asp	lle	Ser	Ser	Leu 365	Thr	Ser	Glu
10	Asp	Ser 370	Ala	Val	Tyr	Phe	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
15	Ala 385	Tyr	Trp	Gly	Gln	Gly 390	Thr	Leu	Val	Thr	Val 395	Ser	Ala	Gly	Gly	Gly 400
	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	He	Va I 415	Met
20	Thr	Gln	Ala	Ala 420	Pro	Ser	lle	Pro	Va I 425	Thr	Pro	Gly	Glu	Ser 430	Val	Ser
25	lle	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
	Tyr	Leu 450	Tyr	Trp	Phe	Leu	GIn 455	Arg	Pro	Gly	GIn	Ser 460	Pro	GIn	Leu	Leu
30	lle 465	Tyr	Arg	Met	Ser	Asn 470	Leu	Ala	Ser	Gly	Va I 475	Pro	Asp	Arg	Phe	Ser 480
	Gly	Ser	Gly	Ser	Gly 485	Thr	Ala	Phe	Thr	Leu 490	Arg	lle	Ser	Arg	Va I 495	Glu
35	Δla	Glu	Aen	Val	GLV	Val	Tvr	Tur	Cve	Mot	Gle	Hie	ماا	Glu	Tur	Dro

```
Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu lie Lys
             515
                                520
 5
     <210> 265
     <211> 30
     <212> PRT
     <213> Homo sapiens
10
     <400> 265
     Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys Pro Gly Ala
     1
                     5
                                        10
                                                            15
15
     Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr
                 20
                                     25
                                                        30
     <210> 266
     <211> 5
20
     <212> PRT
     <213> Homo sapiens
     <400> 266
25
     Asn Ser Trp Met Asn
     1
                     5
     <210> 267
30
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <400> 267
     Trp Val Arg Gin Arg Pro Gly Lys Gly Leu Glu Trp Val Gly
35
```

1

```
<210> 268
     <211> 17
 5
     <212> PRT
     <213> Homo sapiens
     <400> 268
     Arg Ile Tyr Pro Gly Asp Gly Glu Thr Ile Tyr Asn Gly Lys Phe Arg
10
     1
                     5
                                         10
                                                            15
     Val
15
     <210> 269
     <211> 32
     <212> PRT
     <213> Homo sapiens
20
     <400> 269
     Arg Val Thr lle Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu
     1
                     5
                                         10
                                                            15
     Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
25
                 20
                                    25
                                                        30
     <210> 270
30
     <211> 9
     <212> PRT
     <213> Homo sapiens
     <400> 270
35
     Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr
```

```
<210> 271
     <211> 11
     <212> PRT
     <213> Homo sapiens
     <400> 271
     Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser
10
     1
                     5
                                         10
     <210> 272
     <211> 23
     <212> PRT
15
     <213> Homo sapiens
     <400> 272
     Asp lle Val Met Thr Gln Ser Ala Leu Ser Leu Pro Val Thr Pro Gly
                     5
20
     1
                                         10
                                                             15
     Glu Pro Ala Ser Ile Ser Cys
                 20
25
     <210> 273
     <211> 16
     <212> PRT
     <213> Homo sapiens
30
     <400> 273
     Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
                     5
                                         10
                                                            15
35
```

<210> 274

```
<211> 15
```

<212> PRT

<213> Homo sapiens

5 <400> 274

Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu lle Tyr

1

5

10

15

10 <210> 275

<211> 7

<212> PRT

<213> Homo sapiens

15 <400> 275

Arg Met Ser Asn Leu Ala Ser

1

5

20 <210> 276

<211> 32

<212> PRT

<213> Homo sapiens

25 <400> 276

Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr

1 5 10 15

Leu Lys IIe Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys

30

20

25

30

<210> 277

<211> 9

35 <212> PRT

<213> Homo sapiens

```
<400> 277
      Met Gln His Ile Glu Tyr Pro Phe Thr
      1
 5
      <210> 278
      <211> 10
      <212> PRT
10
      <213> Homo sapiens
      <400> 278
      Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
15
      <210> 279
      <211> 30
     <212> PRT
20
     <213> Homo sapiens
     <400> 279
     Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys Pro Gly Ala
      1
                     5
                                         10
                                                             15
25
     Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr
                 20
                                     25
                                                         30
30
     <210> 280
     <211> 5
     <212> PRT
     <213> Homo sapiens
35
     <400> 280
     Asn Ser Trp Met Asn
```

1 5 <210> 281 5 <211> 14 <212> PRT <213> Homo sapiens <400> 281 10 Trp lle Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp lle Gly 5 1 10 <210> 282 15 <211> 17 <212> PRT <213> Homo sapiens <400> 282 20 Arg lie Tyr Pro Gly Asp Gly Glu Thr lie Tyr Asn Gly Lys Phe Arg 10 15 Val 25 <210> 283 <211> 32 <212> PRT 30 <213> Homo sapiens <400> 283 Arg Val Thr lle Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu 1 5 10 15 35

Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg

<210> 284

<211> 9 5

<212> PRT

<213> Homo sapiens

<400> 284

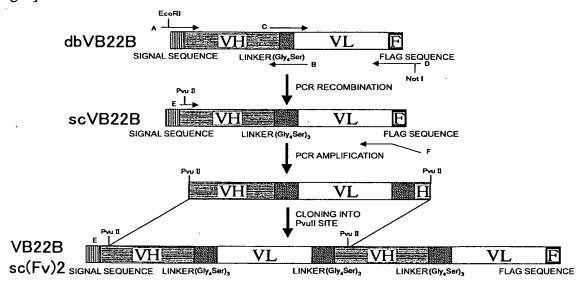
10 Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr 5

1

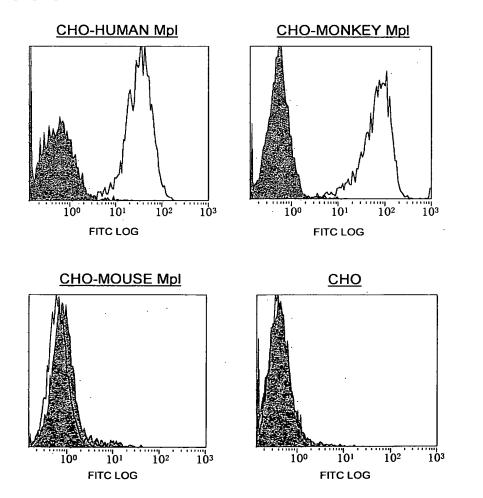
<210> 285

15 <211> 11

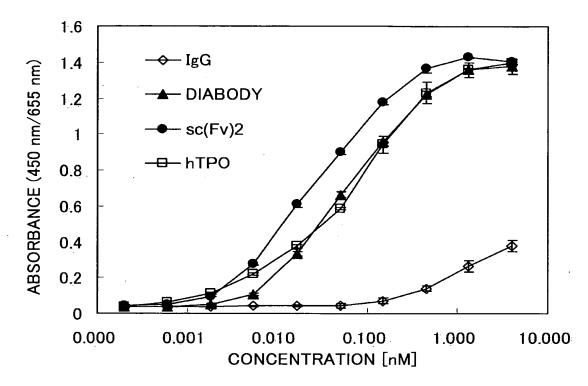
<212> PRT

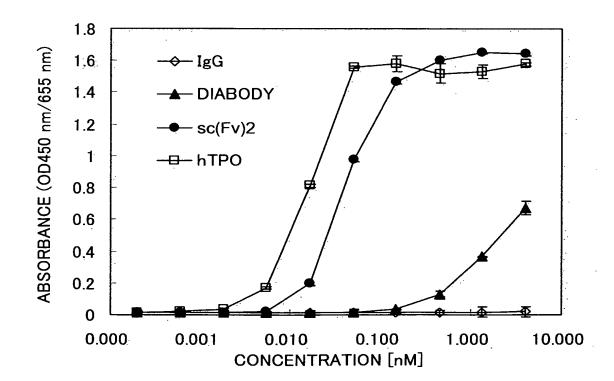

<213> Homo sapiens

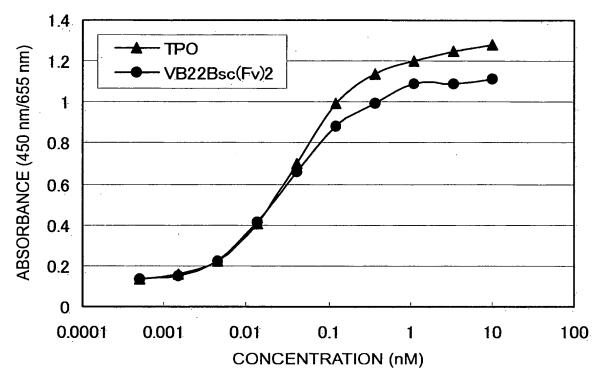
<400> 285


Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 20

[Document Name] Drawings


[Fig. 1]


[Fig. 2]

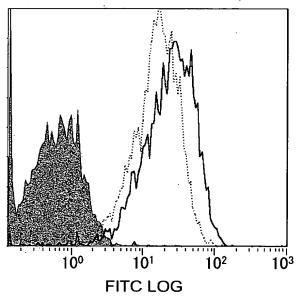

[Fig. 3]

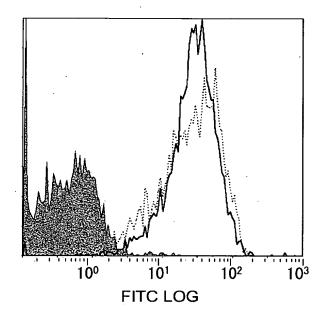
[Fig.4]

[Fig. 5]

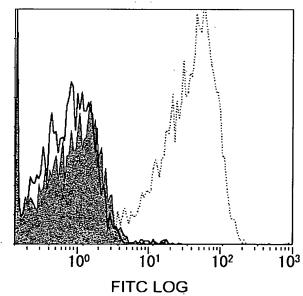
[Fig. 6]

		CDR1	_	CDR2
VA7	DIVMTQAAPSIPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VA130	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLORPGOSPOLLIY	RMSNLAS
VA259	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB17B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB12B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB140	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB33	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLYSNGNIYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB45B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB83	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFMQRPGQSPQLLIY	RMSNLAS
VB115	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB14B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB22B	DIVMTQAAPSIPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB16	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLYSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB157	DIVMTQAAPSVSVTPGESVSISC	RSSKSLLYSNGNIYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB4B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHNNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB51	DIVMTQAAPSLPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
		CDR3	<u> </u>	
VA7	GVPDRFSGSGSGTAFTLRISRVEA	AEDVGIYYC MQHLEYP	FT FGTGTKLEIK	
VA130	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VA259	GAPDRFSGSGSGTAFTLRISRVET	PEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB17B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB12B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB140	GVPDRFSGSGSGAAFTLRISRVEA	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB33	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB45B	GVPDRFSGSGSGAAFTLRISRVEA	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB8B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHVEYP	YT FGSGTKLEIK	
VB115	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB14B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB22B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHIEYP	FT FGSGTKLEIK	
VB16	GVPDRFSGSGSGTAFTLTISSVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB157	GVPDRFSGSGSGTAFTLKISRVE	AEDVGVYYC MQHLEYP	l l	
VB4B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHIEYP	FT FGSGTKLEIK	
VB51	GVPDRFSGSGSGTAFTLRISRVE	FEDVGVYYC WOHLEYP	YT FGSGTKLEIK	

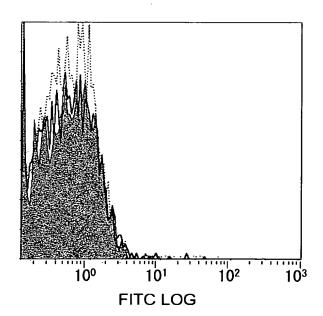

[Fig. 7]

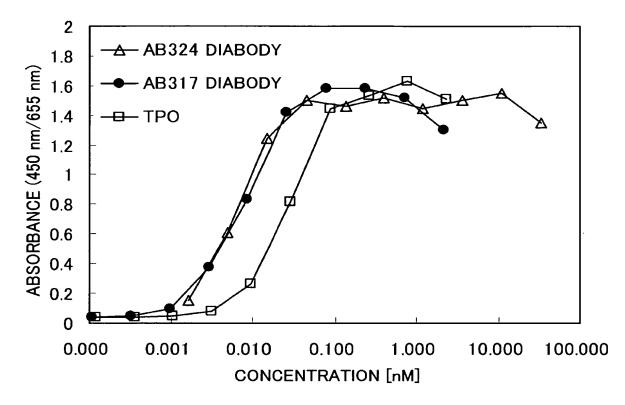

		CDR1		CDR2
VA7	DIVMTQAAPSIPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VA130	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VA259	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB17B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB12B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB140	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB33	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLYSNGNIYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB45B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB8B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFMQRPGQSPQLLIY	RMSNLAS
VB115	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB14B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB22B	DIVMTQAAPSIPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB16	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLYSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB157	DIVMTQAAPSVSVTPGESVSISC	RSSKSLLYSNGNIYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB4B	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHNNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
VB51	DIVMTQAAPSLPVTPGESVSISC	RSSKSLLHSNGNTYLY	WFLQRPGQSPQLLIY	RMSNLAS
		CDR3		
VA7	GVPDRFSGSGSGTAFTLRISRVE	AEDVGIYYC MQHLEYPI	FT FGTGTKLEIK	
VA130	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VA259	GAPDRFSGSGSGTAFTLRISRVE			
VB17B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB12B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB140	GVPDRFSGSGSGAAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB33	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB45B	GVPDRFSGSGSGAAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	•
VB8B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHVEYP	YT FGSGTKLEIK	
VB115	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB14B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB22B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHIEYPI	FT FGSGTKLEIK	
VB16	GVPDRFSGSGSGTAFTLTISSVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB157	GVPDRFSGSGSGTAFTLKISRVE	AEDVGVYYC MQHLEYP	YT FGSGTKLEIK	
VB4B	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHIEYPI	FT FGSGTKLEIK	
VB51	GVPDRFSGSGSGTAFTLRISRVE	AEDVGVYYC MQHLEYPY	YT FGSGTKLEIK	

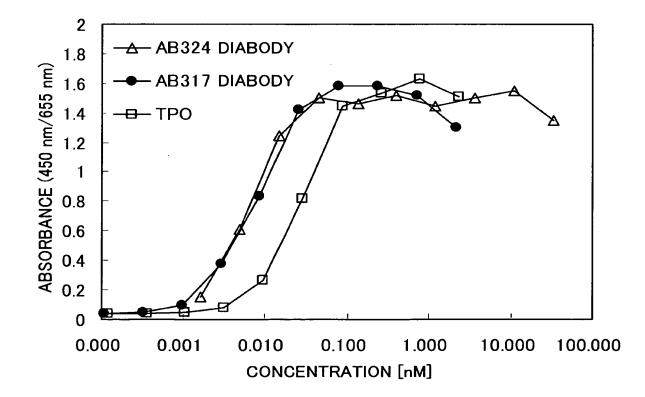
[Fig. 8]

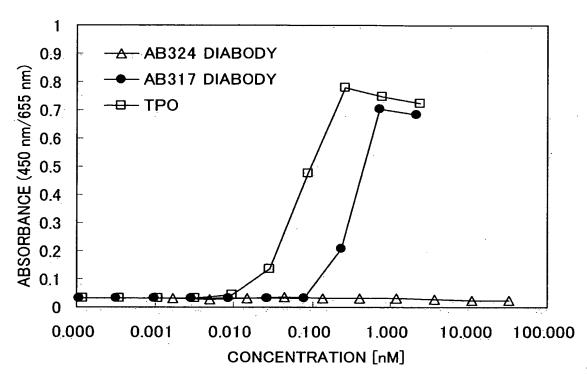


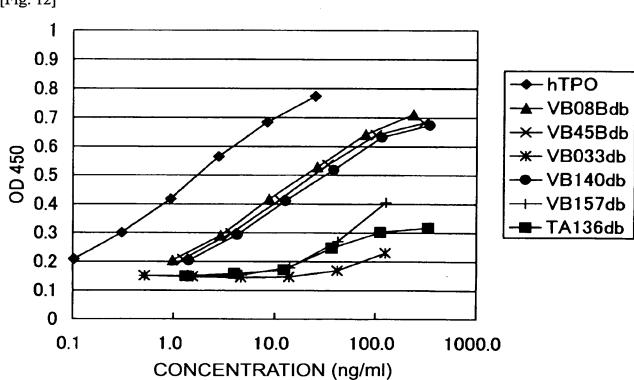
CHO-MONKEY Mpl

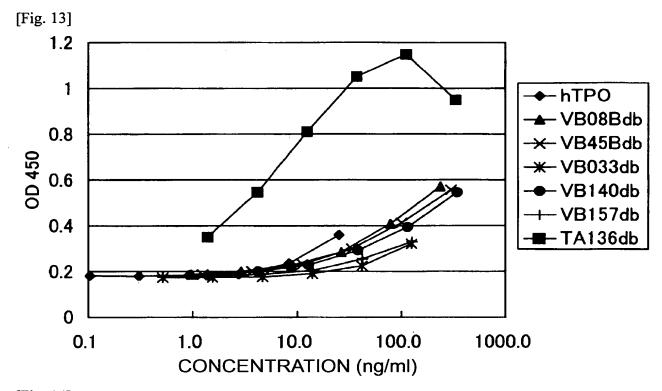


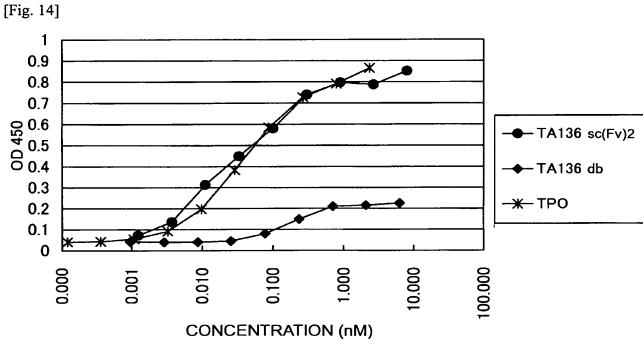

CHO-MOUSE Mpl

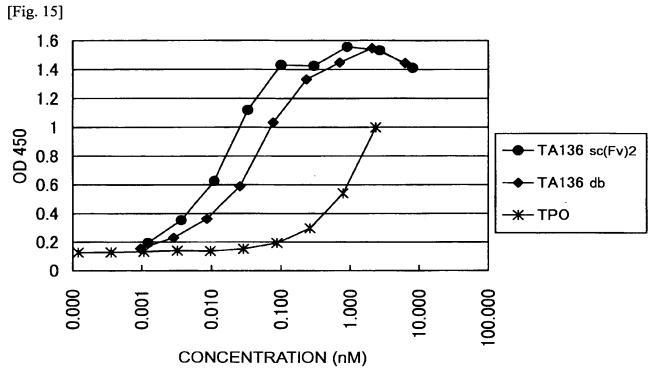

<u>CHO</u>

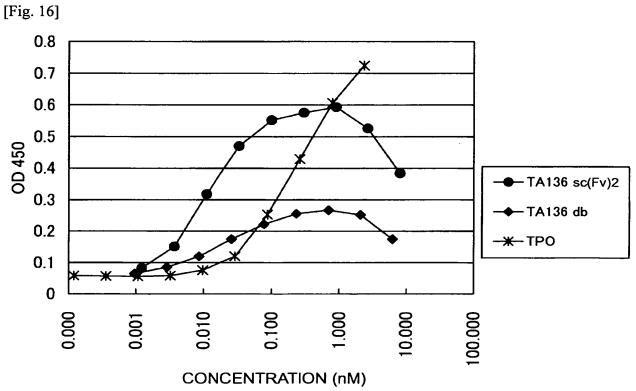

[Fig. 9]

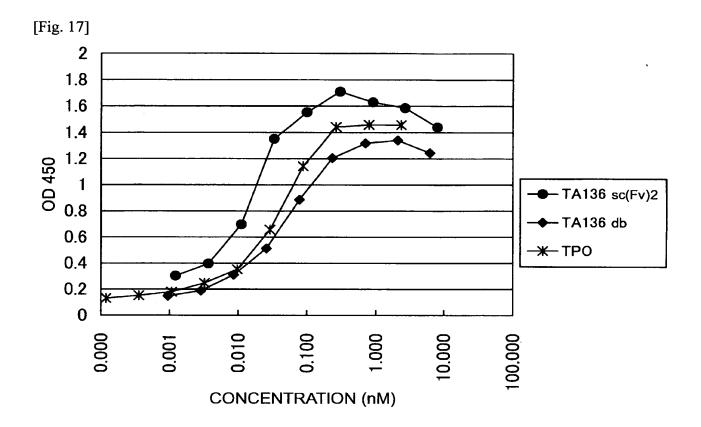

[Fig. 10]

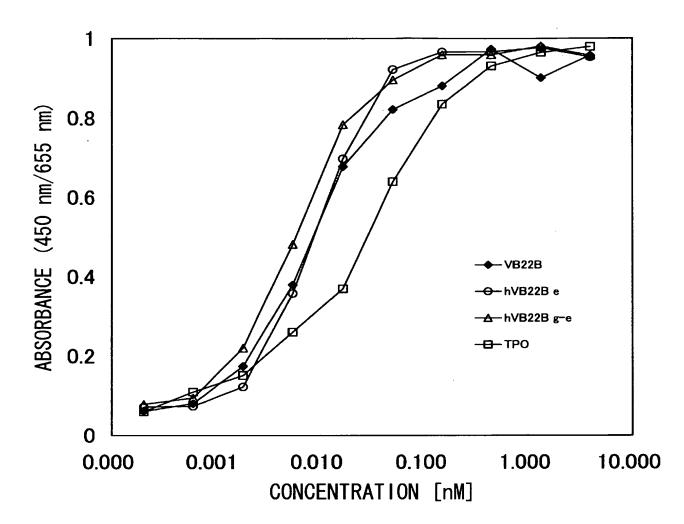












[Fig. 18]

HUMANIZED HEAVY CHAIN

QVQLVQSGPEVKKPGASVKVSCKASGYT	LE TINSWANWVI	RORPGKGLEWMGRIYF	TFTNSWMNWVRQRPGKGLEWMGRIYPGDGETIYNGKFRVRVTITADESTSTAYMELSSLRSEDTAVYYCARGYDDYSFAYWGQGTTVTVSS	STSTAYMELSSLRSEDTAVYY (CARGYDDYSFAY	WGQGTTVTVSS
FR1	CDR1 FR2	FR2	CDR2	FR3	CDR3	FR4
HUMANIZED LIGHT CHAIN						
DIVMTQSALSLPVTPGEPASISCRSSKSLLHSNGNTYLYWFQQKPGQSPQLLIYRMSNLASGVPDRFSGSGSGTAFTLKISRVEAEDVGVYYCMQHIEYPFTFGQGTKLEIK	SLLHSNGNTYI	-YWFQQKPGQSPQLL!	YRMSNLASGYPDRFSGSGSGTA	NFTLK I SRVEAEDVGVYYCMQI	HEYPFTFGQGT	(LE I K
FR1	CDR1	FR2	CDR2	FR3	CDR3 FR4	R4

[Fig. 19]

[Document Name] Abstract

[Abstract]

5

10

[Problems to be Solved] An objective of the present invention is to provide novel anti-Mpl antibodies having TPO-agonistic activity.

[Means for Solving the Problems] Anti-human Mpl antibodies were isolated and purified, and then anti-human Mpl diabodies and anti-human Mpl sv(Fv)₂ were purified using genetic engineering techniques. Furthermore, the present inventors succeeded in humanizing anti-human Mpl sc(Fv)₂.

The diabodies and sc(Fv)₂ were assayed for TPO-like agonistic activity, and were found to have activities higher than those of anti-human Mpl antibodies, or activities equivalent to or higher than those of naturally-occurring human TPO ligand.

[Selected Drawings] None